Background: Inflammation is a complex process as a response to several stimuli, such as infection, a chemical irritant, and the attack of a foreign body. Piquerol was isolated from Piqueria trinervia, and its anti-inflammatory activity was evaluated using in vivo and in vitro models. Methods: Piquerol is a monoterpene that was identified using NMR, FT-IR spectroscopy, and mass spectrometry analysis. The anti-inflammatory activity was tested in vivo in ear edema induced with TPA in mice. Piquerol was also tested on J774A.1 macrophages stimulated with lipopolysaccharide (LPS), and the levels of NO, NF-κB, TNF-α, IL-1β, IL-6, and IL-10 were determined using ELISA. Results: The results show that piquerol diminished ear edema (66.19%). At 150.51 µM, it also inhibited the levels of NO (31.7%), TNF-α (49.8%), IL-1β (69.9%), IL-6 (47.5%), and NF-κB (26.7%), and increased the production of IL-10 (62.3%). Piquerol has a membrane stabilization property in erythrocyte, and at 100 µg/mL, the membrane protection was of 86.17%. Conclusions: Piquerol has anti-inflammatory activity, and its possible mechanism of action is through the inhibition of pro-inflammatory mediators. This compound could be a candidate in the development of new drugs to treat inflammatory problems.
Citrus paradisi species belong to the Rutaceae family, and it is commonly known as grapefruit. Grapefruit consumption involves a large amount of waste that goes to landfills and produces significant pollution affecting the human health. To examine this phenomenon, we designed an efficient chemical method that recovers naringin-rich flavonoid extracts from the fresh waste of grapefruits, by using the solvent impregnation resin method (SIR) with XAD-4 amberlite and either methanol or water as elution systems. Additionally, we focused on evaluating these extracts’ anxiolytic- and antidepressant-like effects in behavioral predictive paradigms in mice. According to direct Principal Component Analysis (PCA) by NMR, and Direct Injection Electrospray Ionization-Mass Spectrometry (DIESI-MS), methanol extracts obtained after resin treatment were free of coumarin compounds and evinced had a high content of naringin. Poncirin, phenylalanine, chrysin 5,7-dimethyl ether, 5,7-dimethoxy-4′-hydroxyflavanone, 2,3-dihydro-2-(4-hydroxyphenyl)-5,6,7,8-tetramethoxy-4H-1-benzopyran-4-one, tetrahydrocurcumin, corchoionoside C, 6′-coumaroyl-1′-O-[2-(3,4-dihydroxyphenyl) ethyl]-β-D-glucopyranoside were also detected. Naringin-rich methanol extract caused a clear anxiolytic-like effect in the Elevated Plus Maze (EPM) and the Hole-Board (HBT) Tests, increasing oral doses of this extract did not produce a sedative effect. A single oral dose caused an antidepressant-like effect in the Tail Suspension Test (TST), while repeated administrations of the methanol extract elicited a robust antidepressant effect in the Forced Swimming Test (FST) in mice. Our evidence highlights the importance of bioprospecting studies of organic waste with therapeutic potentials, such as anxiety and depression disorders.
The secondary metabolites of clerodane diterpenoids have been found in several plant species from various families and in other organisms. In this review, we included articles on clerodanes and neo-clerodanes with cytotoxic or anti-inflammatory activity from 2015 to February 2023. A search was conducted in the following databases: PubMed, Google Scholar and Science Direct, using the keywords clerodanes or neo-clerodanes with cytotoxicity or anti-inflammatory activity. In this work, we present studies on these diterpenes with anti-inflammatory effects from 18 species belonging to 7 families and those with cytotoxic activity from 25 species belonging to 9 families. These plants are mostly from the Lamiaceae, Salicaceae, Menispermaceae and Euphorbiaceae families. In summary, clerodane diterpenes have activity against different cell cancer lines. Specific antiproliferative mechanisms related to the wide range of clerodanes known today have been described, since many of these compounds have been identified, some of which we barely know their properties. It is very possible that there are even more compounds than those described today, in such a way that makes it an open field to discover. Furthermore, some diterpenes presented in this review have already-known therapeutic targets, and therefore, their potential adverse effects can be predicted in some way.
Inflammation is implicated in a wide variety of physiological and pathological processes. Plants are an important source of active anti-inflammatory compounds. The compound 3, 5-diprenyl-4-hydroxyacetophenone (DHAP) was isolated from the dichloromethane extract of the aerial parts of Ageratina pazcuarensis by chromatography and identified by spectroscopic (IR, NMR) and spectrometric (GC-MS) methods. Anti-inflammatory activity was evaluated on ear edema mouse induced with 12-O-tetradecanoylphorbol 13-acetate (TPA) at 2 mg/ear. The antioxidant activity of DHAP was determined using DPPH assay. Cell viability was tested in J774A.1 macrophages, the levels of NO, TNF-α, IL-1β, IL-6, and IL-10 production in macrophages stimulated with lipopolysaccharide (LPS), and membrane lysis induced by hypotonic solution in erythrocytes were evaluated. DHAP diminished the ear edema mouse in 70.10%, and it had scavenger effect against the radical with IC50 of 26.00 ± 0.37 µg/mL. Likewise, 91.78 µM of this compound inhibited the production of NO (38.96%), IL-1β (55.56%), IL-6 (51.62%), and TNF-α (59.14%) in macrophages and increased the levels of IL-10 (61.20%). Finally, 25 and 50 µg/mL DHAP provided the greatest protection against erythrocyte membrane lysis. These results demonstrate that DHAP has anti-inflammatory activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.