Ongoing cancer genome characterization studies continue to elucidate the spectrum of genomic abnormalities that drive many cancers, and in the clinical arena assessment of the driver genetic alterations in patients is playing an increasingly important diagnostic and/or prognostic role for many cancer types. However, the landscape of genomic abnormalities is still unknown for less common cancers, and the influence of specific genotypes on clinical behavior is often still unclear. To address some of these deficiencies, we developed Profile, a prospective cohort study to obtain genomic information on all patients at a large tertiary care medical center for cancer-related care. We enrolled patients with any cancer diagnosis, and, for each patient (unselected for cancer site or type) we applied mass spectrometric genotyping (OncoMap) of 471 common recurrent mutations in 41 cancer-related genes. We report the results of the first 5000 patients, of which 26% exhibited potentially actionable somatic mutations. These observations indicate the utility of genotyping in advancing the field of precision oncology.
The human gut microbiome plays a crucial role in the compositional development of gut microbiota. Though well documented in western pediatrics population, little is known about how various host conditions affect populations in different geographic locations such as the Indian subcontinent. Given the impact of distinct environmental conditions, our study assess the gut bacterial diversity of a small cohort of Indian and Finnish children and investigated the influence of FUT2 secretor status and birth mode on the gut microbiome of these populations. Using multiple profiling techniques, we show that the gut bacterial community structure in 13–14-year-old Indian (n = 47) and Finnish (n = 52) children differs significantly. Specifically, Finnish children possessed higher Blautia and Bifidobacterium, while genera Prevotella and Megasphaera were predominant in Indian children. Our study also demonstrates a strong influence of FUT2 and birth mode variants on specific gut bacterial taxa, influence of which was noticed to differ between the two populations under study.
During COVID19 and other viral pandemics, rapid generation of host and pathogen genomic data is critical to tracking infection and informing therapies. There is an urgent need for efficient approaches to this data generation at scale. We have developed a scalable, high throughput approach to generate high fidelity low pass whole genome and HLA sequencing, viral genomes, and representation of human transcriptome from single nasopharyngeal swabs of COVID19 patients.
RNA sequencing (RNA-seq) is a complementary approach for Mendelian disease diagnosis for patients in whom exome-sequencing is not informative. For both rare neuromuscular and mitochondrial disorders, its application has improved diagnostic rates. However, the generalizability of this approach to diverse Mendelian diseases has yet to be evaluated. We sequenced whole blood RNA from 56 cases with undiagnosed rare diseases spanning 11 diverse disease categories to evaluate the general application of RNA-seq to Mendelian disease diagnosis. We developed a robust approach to compare rare disease cases to existing large sets of RNA-seq controls (N=1,594 external and N=31 family-based controls) and demonstrated the substantial impacts of gene and variant filtering strategies on disease gene identification when combined with RNA-seq. Across our cohort, we observed that RNA-seq yields a 8.5% diagnostic rate. These diagnoses included diseases where blood would not intuitively reflect evidence of disease. We identified RARS2 as an under-expression outlier containing compound heterozygous pathogenic variants for an individual exhibiting profound global developmental delay, seizures, microcephaly, hypotonia, and progressive scoliosis. We also identified a new splicing junction in KCTD7 for an individual with global developmental delay, loss of milestones, tremors and seizures. Our study provides a broad evaluation of blood RNA-seq for the diagnosis of rare disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.