Rainfall is one of the most vital components of agriculture and also predicting it is the most challenging task. In general, weather and rainfall are highly non-linear and complex phenomena, which require progressive computer modeling and simulation for their precise prediction. Numerous and diverse machine learning models are used to predict the rainfall which are Multiple Linear Regression, Neural networks, K-means, Naive Bayes and more. This paper proposes a rainfall prediction model using Conventual Neural Network (CNN) for Indian dataset. The input data is having multiple meteorological parameters and to predict the rainfall in more precise. The Mean Square Error (MSE), accuracy, correlation are the parameters used to validate the proposed model. From the results, the proposed machine learning model provides better results than the other algorithms in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.