Rainfall is one of the most vital components of agriculture and also predicting it is the most challenging task. In general, weather and rainfall are highly non-linear and complex phenomena, which require progressive computer modeling and simulation for their precise prediction. Numerous and diverse machine learning models are used to predict the rainfall which are Multiple Linear Regression, Neural networks, K-means, Naive Bayes and more. This paper proposes a rainfall prediction model using Conventual Neural Network (CNN) for Indian dataset. The input data is having multiple meteorological parameters and to predict the rainfall in more precise. The Mean Square Error (MSE), accuracy, correlation are the parameters used to validate the proposed model. From the results, the proposed machine learning model provides better results than the other algorithms in the literature.
India is agricultural country and Indian farmer select wide selection of fruit and vegetable crops. The cultivation of crops can be improved by the technological support. Fruits and vegetables losses are caused by disease. Diseases are seen on the leaves and fruits of plant, therefore disease detection plays a crucial role in cultivation of crops. Pathogens, fungi, microorganism, bacteria and viruses are sorts of fruit diseases also unhealthy environment is responsible for diseases. There are many techniques to spot diseases in fruits in its early stages. Hence, there's a requirement of automatic fruit unwellness detection system within the early stage of the unwellness. The aim is to detect the fruit disease, this method take input as image of fruit and determine it as infected or non- infected. The proposed method is based on the use of Scale-invariant Feature Transform (SIFT) Model with the desirable goal of accurate and fast classification of fruits. The SIFT features are local and based on the appearance of the object at particular interest points, and are invariant to image scale and rotation. They are also robust to changes in illumination, noise, and minor changes in viewpoint on image processing theory. SIFT have significant advantages because of their high accuracy, relatively easy to extract and allow for correct object identification with low probability of mismatch. Besides, they do not need an outsized number of coaching samples to avoid overfitting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.