Ovarian cancer is the seventh most common gynaecologic malignancy seen in women. Majority of the patients with ovarian cancer are diagnosed at the advanced stage making prognosis poor. The standard management of advanced ovarian cancer includes tumour debulking surgery followed by chemotherapy. Various types of chemotherapeutic regimens have been used to treat advanced ovarian cancer, but the most promising and the currently used standard first-line treatment is carboplatin and paclitaxel. Despite improved clinical response and survival to this combination of chemotherapy, numerous patients either undergo relapse or succumb to the disease as a result of chemotherapy resistance. To understand this phenomenon at a cellular level, various macromolecules such as DNA, messenger RNA and proteins have been developed as biomarkers for chemotherapy response. This review comprehensively summarizes the problem that pertains to chemotherapy resistance in advanced ovarian cancer and provides a good overview of the various biomarkers that have been developed in this field.
Conventional treatment for advanced ovarian cancer is an initial debulking surgery followed by chemotherapy combination of carboplatin and paclitaxel. Despite initial high response, three-fourths of these women experience disease recurrence with a dismal prognosis. Patients with advanced-stage ovarian cancer who underwent cytoreductive surgery were enrolled and tissue samples were collected. Post surgery, these patients were started on chemotherapy and followed up till the end of the cycle. Fluorescence-based differential in-gel expression coupled with mass spectrometric analysis was used for discovery phase of experiments, and real-time polymerase chain reaction, Western blotting, and pathway analysis were performed for expression and functional validation of differentially expressed proteins. While aldehyde reductase, hnRNP, cyclophilin A, heat shock protein-27, and actin are upregulated in responders, prohibitin, enoyl-coA hydratase, peroxiredoxin, and fibrin-β are upregulated in the nonresponders. The expressions of some of these proteins correlated with increased apoptotic activity in responders and decreased apoptotic activity in nonresponders. Therefore, the proteins qualify as potential biomarkers to predict chemotherapy response.
AimParkinson’s disease and schizophrenia are clinical end points of dopaminergic deficit and excess, respectively, in the mid-brain. In accordance, current pharmacological interventions aim to restore normal dopamine levels, the overshooting of which culminates in adverse effects which results in psychotic symptoms in Parkinson’s disease and extra-pyramidal symptoms in schizophrenia. Currently, there are no laboratory assays to assist treatment decisions or help foresee these drug side-effect outcomes. Therefore, the aim was to discover a protein biomarker that had a varying linear expression across the clinical dopaminergic spectrum.Materials and methodsiTRAQ-based proteomic experiments along with mass spectrometric analysis was used for comparative proteomics using cerebrospinal fluid (CSF). CSF fluid was collected from 36 patients with Parkinson’s disease, 15 patients with urological diseases that served as neurological controls, and seven schizophrenic patients with hallucinations. Validation included ELISA and pathway analysis to highlight the varying expression and provide plausible molecular pathways for differentially expressed proteins in the three clinical phenotypes.ResultsProtein profiles were delineated in CSF from Parkinson’s disease patients, neurological control and schizophrenia, respectively. Ten of the proteins that were identified had a linear relationship across the dopaminergic spectrum. α-2-Macroglobulin showed to be having high statistical significance on inter-group comparison on validation studies using ELISA.ConclusionsNon-gel-based proteomic experiments are an ideal platform to discover potential biomarkers that can be used to monitor pharmaco-therapeutic efficacy in dopamine-dictated clinical scenarios. α-2 Macroglobulin is a potential biomarker to monitor pharmacological therapy in Parkinson’s disease and schizophrenia.
Aim of the Study:Parkinson’s disease and schizophrenia are disease end points of dopaminergic deficit and hyperactivity, respectively, in the mid brain. Accordingly, current medications aim to restore normal dopamine levels, overshooting of which results in adverse effects of psychosis and extra-pyramidal symptoms, respectively. There are currently no available laboratory tests to guide treatment decisions or help predict adverse side effects of the drugs. The aim was to therefore explore the possibility of using apolipoprotein E as a biomarker to monitor pharmacological intervention in dopamine dictated states of Parkinson’s disease and schizophrenia for optimum therapy.Methods:Naïve and treated, Parkinson’s disease and schizophrenic patients were recruited from neurology and psychiatry clinics. Serum of healthy volunteers was collected as controls. Serum concentrations of apolipoprotein E was estimated by enzyme-linked immunosorbent assay (ELISA). Pathway analysis was carried out to delineate the interactions of apolipoprotein E in Parkinson’s disease and schizophrenia.Results:Apolipoprotein E levels are higher in Parkinson’s disease patients as compared with schizophrenic samples (P < .05). Also, post-treatment apolipoprotein E levels in both disease states were at par with levels seen in healthy controls. The interactions of apolipoprotein E validate the results and place the differential expression of the protein in Parkinson’s disease and schizophrenia in the right perspective.Conclusion:Apolipoprotein E concentration across the dopaminergic spectrum suggests that it can be pursued not only as a potential biomarker in schizophrenia and Parkinson’s disease, but can also be an effective tool for clinicians to determine efficacy of drug-based therapy.
Background and objective Dopamine plays an important role in the disease pathology of Parkinson’s disease and schizophrenia. These two neuropsychiatric disorders represent disease end points of the dopaminergic spectrum where Parkinson’s disease represents dopamine deficit and schizophrenia represents dopamine hyperactivity in the mid-brain. Therefore, current treatment strategies aim to restore normal dopamine levels. However, during treatment patients develop adverse effects due to overshooting of physiological levels of dopamine leading to psychosis in Parkinson’s disease, and extrapyramidal symptoms in schizophrenia. Absence of any laboratory tests hampers modulation of pharmacotherapy. Apolipoprotein E and α-synuclein have an important role in the neuropathology of these two diseases. The objective of this study was to evaluate cerebrospinal fluid (CSF) concentrations of apolipoprotein E and α-synuclein in patients with these two diseases so that they may serve as biomarkers to monitor therapy in Parkinson’s disease and schizophrenia. Methods Drug-naïve Parkinson’s disease patients and Parkinson’s disease patients treated with dopaminergic therapy, neurological controls, schizophrenic patients treated with antidopaminergic therapy, and drug-naïve schizophrenic patients were recruited for the study and CSF was collected. Enzyme-linked immunosorbent assays were carried out to estimate the concentrations of apolipoprotein E and α-synuclein. Pathway analysis was done to establish a possible role of these two proteins in various pathways in these two dopamine dictated diseases. Results Apolipoprotein E and α-synuclein CSF concentrations have an inverse correlation along the entire dopaminergic clinical spectrum. Pathway analysis convincingly establishes a plausible hypothesis for their co-regulation in the pathogenesis of Parkinson’s disease and schizophrenia. Each protein by itself or as a combination has encouraging sensitivity and specificity values of more than 55%. Conclusion The dynamic variation of these two proteins along the spectrum is ideal for them to be pursued as pharmacotherapeutic biomarkers in CSF to monitor pharmacological efficacy in Parkinson’s disease and schizophrenia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.