Heat and drought are two major limiting factors for perennial pasture production in south eastern Australia. Although previous studies have focused on the effects of prolonged heat and drought stresses on pasture growth and physiology, the effects of short term recurring combined heat and drought stresses and the recovery from them have not been studied in detail. A controlled environment experiment was conducted to investigate the growth and physiological responses of perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.) plants exposed to two consecutive seven day heat (control = 25/15 °C day/night; moderate = 30/20 °C day/night and severe = 35/30 °C day/night) and/or drought stresses each followed by a seven day recovery period. During the first moderate and severe heat and drought treatments, maximum photochemical efficiency of photosystem II (Fv/Fm), cell membrane permeability and relative leaf water content decreased in chicory and tall fescue compared to perennial ryegrass and cocksfoot. However, during the second moderate heat and drought treatment, all species showed less reduction in the same parameters suggesting that these species acclimated to consecutive moderate heat and drought stresses. Chicory was the only species that was not affected by the second severe heat and drought stress while physiological parameters of all grass species were reduced closer to minimum values. Irrigation mitigated the negative effects of heat stress by cooling the canopies 1–3 °C below air temperatures with the most cooling observed in chicory. All the species exposed to moderate heat and drought were fully recovered and those exposed to severe heat and drought recovered partially at the end of the experiment. These findings suggest that chicory may be a potential species for areas subject to frequent heat and drought stress.
The seasonal pattern of pasture production and its variability from year to year are important for pasture-based livestock production systems in south-eastern Australia because they influence key strategic decisions such as stocking rate and timing of the reproductive cycle. In this study, the effects of observed climate variations over the period 1960–2015 on pasture growth patterns were investigated by using a biophysical modelling approach. Pasture growth rates were simulated using DairyMod biophysical software at five sites ranging from high-rainfall, cool temperate at Elliott in Tasmania to medium-rainfall, warm temperate at Wagga Wagga in southern New South Wales. Annual pasture yields showed a small increasing rate of 50 kg DM/ha.year at Elliott and 40 kg DM/ha.year at Ellinbank (P < 0.05), whereas other sites showed no significant trend over time. A cross-site analysis of seasonal average pasture growth rates predicted under four different discrete periods of 14 years each showed that winter growth has increased steadily through time (P = 0.001), and spring pasture growth rate has decreased (P < 0.001) in 2002–15 compared with the earlier periods. Year-to-year pasture yield variability (coefficient of variation) during autumn and spring seasons has also increased (P < 0.05) across sites in the period 2002–15 compared with 1998–2001. At each site, the number of spring days with water stress (growth limiting factor_water <0.7) was ~10 times greater than the number of days with temperature stress (growth limiting factor_temperature <0.7). There was an increase in the number of days with water stress at Wagga Wagga, and increased heat stress at Wagga Wagga and Hamilton (P < 0.05) in the most recent period. These results highlight the importance of incorporating more heat-tolerant and deep-rooting cultivars into pasture-based production system. Although previous studies of climate-change impact have predicted increasing winter growth rates and a contraction of the spring growing season in the future (2030), this study provides clear evidence that these changes are already occurring under the observed climate in south-eastern Australia.
Despite evidence that leaf temperatures can differ by several degrees from the air, crop simulation models are generally parameterised with air temperatures. Leaf energy budget is a process-based approach that can be used to link climate and physiological processes of plants, but this approach has rarely been used in crop modelling studies. In this study, a controlled environment experiment was used to validate the use of the leaf energy budget approach to calculate leaf temperature for perennial pasture species, and a modelling approach was developed utilising leaf temperature instead of air temperature to achieve a better representation of heat stress impacts on pasture growth in a biophysical model. The controlled environment experiment assessed the impact of two combined seven-day heat (control = 25/15 • C, day/night, moderate = 30/20 • C, day/night, and severe = 35/25 • C, day/night) and drought stresses (with seven-day recovery period between stress periods) on perennial ryegrass (Lolium perenne L.), cocksfoot (Dactylis glomerata L.), tall fescue (Festuca arundinacea Schreb.) and chicory (Cichorium intybus L.). The leaf temperature of each species was modelled by using leaf energy budget equation and validated with measured data. All species showed limited homeothermy with the slope of 0.88 (P < 0.05) suggesting that pasture plants can buffer temperature variations in their growing environment. The DairyMod biophysical model was used to simulate photosynthesis during each treatment, using both air and leaf temperatures, and the patterns were compared with measured data using a response ratio (effect size compared to the well-watered control). The effect size of moderate heat and well-watered treatment was very similar to the measured values (~0.65) when simulated using T leaf, while T air overestimated the consecutive heat stress impacts (0.4 and 0). These results were used to test the heat stress recovery function (Tsum) of perennial ryegrass in DairyMod, finding that recovery after heat stress was well reproduced when parameterized with T sum = 20, while T sum = 50 simulated a long lag phase. Long term pasture growth rate simulations under irrigated conditions in south eastern Australia using leaf temperatures predicted 6-34% and 14-126% higher pasture growth rates, respectively at Ellinbank and Dookie, during late spring and summer months compared to the simulations using air temperatures. This study demonstrated that the simulation of consecutive heat and/or drought stress impacts on pasture production, using DairyMod, can be improved by using leaf temperatures instead of air temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.