Taking regular walks when living with Parkinson’s disease (PD) has beneficial effects on movement and quality of life. Yet, patients usually show reduced physical activity compared to healthy older adults. Using auditory stimulation such as music can facilitate walking but patients vary significantly in their response. An individualized approach adapting musical tempo to patients’ gait cadence, and capitalizing on these individual differences, is likely to provide a rewarding experience, increasing motivation for walk-in PD. We aim to evaluate the observance, safety, tolerance, usability, and enjoyment of a new smartphone application. It was coupled with wearable sensors (BeatWalk) and delivered individualized musical stimulation for gait auto-rehabilitation at home. Forty-five patients with PD underwent a 1-month, outdoor, uncontrolled gait rehabilitation program, using the BeatWalk application (30 min/day, 5 days/week). The music tempo was being aligned in real-time to patients’ gait cadence in a way that could foster an increase up to +10% of their spontaneous cadence. Open-label evaluation was based on BeatWalk use measures, questionnaires, and a six-minute walk test. Patients used the application 78.8% (±28.2) of the prescribed duration and enjoyed it throughout the program. The application was considered “easy to use” by 75% of the patients. Pain, fatigue, and falls did not increase. Fear of falling decreased and quality of life improved. After the program, patients improved their gait parameters in the six-minute walk test without musical stimulation. BeatWalk is an easy to use, safe, and enjoyable musical application for individualized gait rehabilitation in PD. It increases “walk for exercise” duration thanks to high observance.Clinical Trial Registration: ClinicalTrials.gov Identifier: NCT02647242.
BackgroundRhythmic Auditory Stimulation (RAS) is an effective technique to improve gait and reduce freezing episodes for Persons with Parkinson’s Disease (PwPD). The BeatHealth system, which comprises a mobile application, gait sensors, and a website, exploits the potential of the RAS technique. This paper describes the tools used for co-designing and evaluating the system and discusses the results and conclusions.MethodsPersonas, interviews, use cases, and ethnographic observations were used to define the functional requirements of the system. Low fidelity prototypes were created for iterative and incremental evaluation with end-users. Field trials were also performed with the final system. The process followed a user centered design methodology defined for this project with the aim of building a useful, usable, and easy-to-use system.ResultsFunctional requirements of the system were produced as a result of the initial exploration phase. Building upon these, mock-ups for the BeatHealth system were created. The mobile application was iterated twice, with the second version of it achieving a rating of 75 when assessed by participants through the System Usability Scale (SUS). After another iteration field trials were performed and the mobile application was rated with an average 78.6 using SUS. Participants rated two website mock-ups, one for health professionals and another for end-users, as good except from minor issues related to visual design (e.g. font size), which were resolved in the final version.ConclusionThe high ratings obtained in the evaluation of the BeatHealth system demonstrate the benefit of applying a user centered design methodology which involves stakeholders from the very beginning. Other important lessons were learned through the process of design and development of the system, such as the importance of motivational aspects, the techniques which work best, and the extra care that has to be taken when evaluating non-functional mock-ups with end users.
This paper reports on a load balancing system for an academic department, which can be used as an implementation mechanism for strategic planning. In essence, it consists of weighting each activity within the department and performing workload allocation based on this transparent scheme. The experience to date has been very positive, in terms of achieving strategic change and staff contentment.
--In this paper a simple practical method for blind segmentation of continuous speech into its constituent syllables is presented. This technique which uses amplitude onset velocity and coarse spectral makeup to identify syllable boundaries is tested on a corpus of continuous speech and compared with an established segmentation algorithm. The results show substantial performance benefit using the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.