Bi-Zn solder alloys with different Zn contents (1.5, 2.7 and 5wt-%) were prepared by casting and the correlation between the microstructure and corrosion behaviour by mean of direct current electrochemical tests was studied. The surface analysis of the hypoeutectic Bi-Zn alloy samples revealed the presence of needle-like ZnO and very small agglomerated spherical particles. By contrast, eutectic alloy presented the formation of a uniform and compact film of ZnO, which is related to the better distribution of Zinc in the Bi-rich matrix. Despite the increase in Zn content compared to the hypoeutectic alloy, the corrosion rate showed similar values regardless of its content in the alloy. The Bi-5wt-% Zn alloy presented the highest limiting current density, and consequently, the highest degree of corrosion of the studied alloys. The pro-eutectic phase consisting of large and thick Zn fibres is preferentially dissolved, promoting a selective attack that penetrates inside the sample.
This study aims to analyze the influence of macrosegregation on microstructure evolution, and of microstructure length scale on the corrosion resistance of a Zn-5.0wt.%Mg alloy casting. The analyzed samples were taken along the length of castings unidirectionally solidified in unsteady state conditions of heat extraction. Microstructure characterization, microhardness, linear polarization and electrochemical impedance spectroscopy (EIS) tests were performed. A unique type of microstructure was observed, characterized essentially by a morphology typified by idiomorphic MgZn 2 crystals in a "complex eutectic mixture" [coexistence of stable (Zn+Mg 2 Zn 11 ) and metastable (Zn+MgZn 2 ) eutectics]. The correlation between thermal and microstructural parameters, permitted experimental growth laws, correlating the evolution of the lamellar eutectic spacing with the cooling rate to be established. Vickers microhardness and electrochemical corrosion tests showed that more refined microstructures associated with higher experimental cooling rates, are related to a better set of higher hardness and corrosion resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.