Laser materials processing with ultra-short pulses allows very precise and high quality results with a minimum extent of the thermally affected zone. However, with increasing average laser power and repetition rates the so-called heat accumulation effect becomes a considerable issue. The following discussion presents a comprehensive analytical treatment of multi-pulse processing and reveals the basic mechanisms of heat accumulation and its consequence for the resulting processing quality. The theoretical findings can explain the experimental results achieved when drilling microholes in CrNi-steel and for cutting of CFRP. As a consequence of the presented considerations, an estimate for the maximum applicable average power for ultra-shorts pulsed laser materials processing for a given pulse repetition rate is derived. femtosecond laser-written waveguides with variable repetition rate," Opt. Express 13(12), 4708-4716 (2005). 13. R. R. Gattass, L. R. Cerami, and E. Mazur, "Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates," Opt.
A linear to radial and/or azimuthal polarization converter (LRAC) has been inserted into the beam delivery of a micromachining station equipped with a picosecond laser system. Percussion drilling and helical drilling in steel have been performed using radially as well as azimuthally polarized infrared radiation at 1030 nm. The presented machining results are discussed on the basis of numerical simulations of the polarization-dependent beam propagation inside the fabricated capillaries.
An analytical model is presented, which allows estimating the expected dose rates resulting from X-ray emission from ultrashort-pulse laser-produced plasma under industrial conditions. The model is based on the calculation of the Bremsstrahlung spectrum in the X-ray region between about 5 keV and 50 keV, which is created by the hot electrons in the plasma. The model was calibrated with both spectral and dose rate measurements. The scaling of the hot-electron temperature and the fraction of hot electrons in the plasma served as calibration values. The agreement between experiments and model for the investigated irradiances in range from 10 12 to 10 15 W/cm 2 is excellent. The expected Ḣ (0.07) and Ḣ (10) dose rates at a distance of 20 cm from the process in air were calculated for upcoming lasers with 1 kW of average power. Although the dose rates close to the plasma significantly exceed the allowed dose of 50 mSv per year for an irradiance exceeding about 2·10 15 W/cm 2 , the calculations show that shielding with a 2-mm sheet of iron already at a distance of 20 cm attenuates the radiation to a safe value below 0.4 µSv/h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.