Eukaryotic cells have systems of internal organelles to synthesize lipids and membrane proteins, to release secreted proteins, to take up nutrients and to degrade membrane-bound and internalized molecules. Proteins and lipids move from organelle to organelle using transport vesicles. The accuracy of this traffic depends upon organelles being correctly recognized. In general, organelles are identified by the activated GTPases and specific lipid species that they display. These short-lived determinants provide organelles with an identity that is both unique and flexible. Recent studies have helped to establish how cells maintain and restrict these determinants and explain how this system is exploited by invading pathogens.
The algorithms and neural circuits that process spatiotemporal changes in luminance to extract visual motion cues have been the focus of intense research. An influential model, the Hassenstein-Reichardt correlator1 (HRC), relies on differential temporal filtering of two spatially separated input channels, delaying one input signal with respect to the other. Motion in a particular direction causes these delayed and non-delayed luminance signals to arrive simultaneously at a subsequent processing step in the brain; these signals are then nonlinearly amplified to produce a direction-selective response (Figure 1A). Recent work in Drosophila has identified two parallel pathways that selectively respond to either moving light or dark edges2,3. Each of these pathways requires two critical processing steps to be applied to incoming signals: differential delay between the spatial input channels, and distinct processing of brightness increment and decrement signals. Using in vivo patch-clamp recordings, we demonstrate that four medulla neurons implement these two processing steps. The neurons Mi1 and Tm3 respond selectively to brightness increments, with the response of Mi1 delayed relative to Tm3. Conversely, Tm1 and Tm2 respond selectively to brightness decrements, with the response of Tm1 delayed compared to Tm2. Remarkably, constraining HRC models using these measurements produces outputs consistent with previously measured properties of motion detectors, including temporal frequency tuning and specificity for light vs. dark edges. We propose that Mi1 and Tm3 perform critical processing of the delayed and non-delayed input channels of the correlator responsible for the detection of light edges, while Tm1 and Tm2 play analogous roles in the detection of moving dark edges. Our data shows that specific medulla neurons possess response properties that allow them to implement the algorithmic steps that precede the correlative operation in the HRC, revealing elements of the long-sought neural substrates of motion detection in the fly.
The GTPase Arl3p is required to recruit a second GTPase, Arl1p, to the Golgi in Saccharomyces cerevisiae. Arl1p binds to the GRIP domain, which is present in a number of long coiled-coil proteins or 'golgins'. Here we show that Arl3p is not myristoylated like most members of the Arf family, but is instead amino-terminally acetylated by the NatC complex. Targeting of Arl3p also requires a Golgi membrane protein Sys1p. The human homologues of Arl3p (Arf-related protein 1 (ARFRP1)) and Sys1p (hSys1) can be isolated in a complex after chemical cross-linking. This suggests that the targeting of ARFRP1/Arl3p to the Golgi is mediated by a direct interaction between its acetylated N terminus and Sys1p/hSys1.
Humans and animals can learn that specific sensory cues in the environment predict aversive events through a form of associative learning termed fear conditioning. This learning occurs when the sensory cues are paired with an aversive event occuring in close temporal proximity. Activation of lateral amygdala (LA) pyramidal neurons by aversive stimuli is thought to drive the formation of these associative fear memories; yet, there have been no direct tests of this hypothesis. Here we demonstrate that viral-targeted, tissuespecific expression of the light-activated channelrhodopsin (ChR2) in LA pyramidal cells permitted optical control of LA neuronal activity. Using this approach we then paired an auditory sensory cue with optical stimulation of LA pyramidal neurons instead of an aversive stimulus. Subsequently presentation of the tone alone produced behavioral fear responses. These results demonstrate in vivo optogenetic control of LA neurons and provide compelling support for the idea that fear learning is instructed by aversive stimulus-induced activation of LA pyramidal cells.ear conditioning is a simple form of associative learning that provides a powerful model system to study associative plasticity and memory formation (1-4). During fear conditioning, a neutral stimulus [termed the conditioned stimulus (CS)], often an auditory tone, is paired repeatedly with an aversive stimulus [termed the unconditioned stimulus (US)] and animals learn that the CS predicts the occurrence of the US. When the CS is encountered after learning, animals emit a stereotyped group of adaptive responses, including behavioral freezing and associated physiological adjustments, which together are termed the fear response.The lateral nucleus of the amygdala (LA) is a site of associative plasticity, where US-evoked depolarization of LA pyramidal neurons is thought to instruct plasticity at synapses formed by CS inputs onto the same neurons (5-7). Several lines of indirect evidence support the idea that this plasticity occurs as a result of a Hebbian mechanism through which depolarization of LA pyramidal neurons by the shock US coincident with weaker activation of the same cells by auditory CS inputs results in fear learning (8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18). This hypothesis makes the strong prediction that pairing an auditory CS with direct activation of LA pyramidal neurons as an US should be sufficient, in the absence of a shock US, to support fear learning and memory formation. Here we tested this hypothesis by substituting the aversive US with optical stimulation (19,20) of LA pyramidal neurons during learning, and we report that physiological activation of these cells results in fear conditioning. ResultsThe light activated channelrhodopsin (ChR2) (19,20) has been used in other neural systems to activate specific cell populations and produce learning (21-23). We took advantage of this technology and targeted ChR2 to pyramidal cells by in vivo viralmediated gene transfer. We used an adeno-associated virus (AAV) to express a...
The mammalian Golgi protein GRASP65 is required in assays that reconstitute cisternal stacking and vesicle tethering. Attached to membranes by an N-terminal myristoyl group, it recruits the coiled-coil protein GM130. The relevance of this system to budding yeasts has been unclear, as they lack an obvious orthologue of GM130, and their only GRASP65 relative (Grh1) lacks a myristoylation site and has even been suggested to act in a mitotic checkpoint. In this study, we show that Grh1 has an N-terminal amphipathic helix that is N-terminally acetylated and mediates association with the cis-Golgi. We find that Grh1 forms a complex with a previously uncharacterized coiled-coil protein, Ydl099w (Bug1). In addition, Grh1 interacts with the Sec23/24 component of the COPII coat. Neither Grh1 nor Bug1 are essential for growth, but biochemical assays and genetic interactions with known mediators of vesicle tethering (Uso1 and Ypt1) suggest that the Grh1–Bug1 complex contributes to a redundant network of interactions that mediates consumption of COPII vesicles and formation of the cis-Golgi.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.