International audienceThe inter-relationship between processing conditions and fiber breakage has been studied for glass fiber-reinforcedpolyamide 12, prepared using (i) an internal batch mixer, (ii) a laboratory scale corotating twin screw extruder, and (iii) an industrial scale twin screw extruder. The average fiber lengths and fiber length distributions were measured for various compounding conditions (screw or rotor speed, mixing time, feed rate). Experimental results have shown that fiber breakage depends on both screw speed and mixing time, the later being controlled, in an extruder, by the feed rate. For a given compounding system (batch mixer or twin screw extruder), the energy input (specific mechanical energy, SME) during the compounding process is found to be a reliable parameter, which governs fiber length (average, minimal, and maximal) evolution. Experimental data are correctly described with a model defining change in fiber length as a function of SM
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.