PurposeTo investigate insulin fibrillation under accelerated stress conditions in the presence of a novel excipient, the molecular chaperone α-crystallin, in comparison with common excipients.MethodsTo induce fibrillation, recombinant human insulin (0.58 mg ml−1) formulations without excipient or with bovine α-crystallin (0.01–0.2 mg ml−1), human serum albumin (1–5 mg ml−1), sucrose (10–100 mg ml−1) or polysorbate 80 (0.075–0.3 mg ml−1) were subjected to stirring stress in a fluorescence well plate reader and formulation vials. Protein fibrillation was monitored by thioflavin T. The formulations were further characterized by size-exclusion chromatography, light obscuration, UV/Vis and circular dichroism spectroscopy.ResultsIn both methods, insulin formed thioflavin T-binding species, most likely fibrils. Addition of α-crystallin in the well plate assay greatly improved insulin’s resistance to fibrillation, measured as a 6-fold increase in fibrillation lag time for the lowest and 26-fold for the highest concentration used, whereas all other excipients showed only a marginal increase in lag time. The stabilizing effect of α-crystallin was shown by all characterization techniques used.ConclusionsThe effect of α-crystallin on insulin’s physical stability outperforms that of commonly used excipients. α-Crystallin is proposed to bind specifically to pre-fibrillation species, thereby inhibiting fibrillation. This makes α-crystallin an interesting excipient for proteins with propensity to fibrillate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.