ObjectiveAn experiment was to evaluate the interplay of dietary lipid sources and feeding regime in the transition from sow milk to solid food of abruptly weaned piglets.MethodsSoon after weaning, 144 piglets were selected and were trained over a 15 day period to experience gradually reducing dietary fat content from 12% to 6% for lard (L), soybean oil (S), and coconut oil (C) and their feeding behavior and diet preference then tested in a behavior observation experiment. Another 324 weaned piglets were used in three consecutive feeding experiments to measure the effect of different dietary fats on performance and feed choice in the four weeks after abrupt weaning. The lipid sources were used as supplements in a 3% crude fat corn/soya basal diet, with 6% of each being included to form diets 9C, 9S, and 9L respectively, and their effects on performance measured. Combinations of these diets were then further compared in fixed blends or free choice selection experiments.ResultsPiglets pre-trained to experience reducing lipid inclusion showed different subsequent preferences according to lipid source, with a preference for lard at 9%, soybean oil at 3%, and coconut oil at 6% inclusion rate (p<0.001). Following abrupt weaning, whilst after 4 weeks those fed 9C had the heaviest body weights (18.13 kg, p = 0.006). Piglets fed a fixed 1:1 blend of 9C+9S had a poorer feed conversion ratio (FCR = 1.80) than those fed a blend of 9C+9L (FCR = 1.4). The 9C and 9L combination groups showed better performance in both fixed blend and free choice feeding regimes.ConclusionAfter abrupt weaning, they still have dependence on high oleic acid lipids as found in sow milk. A feeding regime offering free choice combination of lipids might give the possibility for piglets to cope better with the transition at weaning, but further research is needed.
To evaluate the effect of different housing systems on sow behavior, 80 gilts were randomly allocated at puberty to four treatments: i) sow stall in gestation followed by farrowing crate (SC), ii) group housing with individual feeding in gestation followed by farrowing crate (GC), iii) ESF (Electronic Sow Feeding) system in gestation followed by farrowing crate (EC), and iv) ESF system followed by group farrowing pen (EG). Behavioral observations were carried out on a total of 16 animals per treatment at the following stages: first day of allocation to housing treatment, day of service, 80 days after service, 109 days after service on entry to farrowing accommodation, 24 h before farrowing, day of farrowing, 14, 27 and 28 days after farrowing, at weaning. On each occasion, individual animals were observed for a 24 period with one minute time sampling. There were significant differences (p<0.001) between stages of the reproductive cycle for all the behavior patterns in all treatments. On the first day in experimental housing treatments, sows spent more time rooting and dog-sitting. Activity and investigatory behavior decreased as pregnancy progressed. An activity peak was apparent just before farrowing, followed by a high level of inactivity on the day of farrowing. Time spent active, eating and drinking increased as lactation progressed, and greatest activity and locomotion was seen immediately following weaning. There were significant differences between housing treatments (p<0.01) for standing, moving, eating, drinking, dog-sitting and lying. During pregnancy SC sows spent more time standing, rooting, drinking and dog sitting, while EC sows spent less time rooting and drinking and more time lying. During lactation, GC sows spent more time standing, moving and eating, less time dog sitting and lateral lying. Nursing frequency was reduced in GC sows (p<0.001). The maternal and piglet behaviors were influenced strongly by environment during lactation. However, it was also shown that previous housing history can influence the maternal behavior in the pre-farrowing stage and during early lactation.
Objective: A study was made investigate factors affecting body surface temperature changes after weaning in sows, whether these can be used to aid detection of natural estrus and how they relate to subsequent reproductive performance.Methods: A total of 132 sows were selected during summer from a breeding farm, with mean parity of 3.6±2.3 and 28.5±0.9 days lactation length. Four daily measurements (6:00, 8:00, 16:00, and 18:00) of vulva (VST), udder (UST), ear base and central back skin temperatures for individual sows were taken by an infrared thermometer, continuing up to 8 days post weaning.Results: The VST obtained from sows showing estrus at 4 days post-weaning (4DPW), 5DPW, and 6DPW showed a peak at the fourth day post-weaning, but then started to decrease. The VST of sows not detected in standing heat (NDPW) remained at a lower level during the experiment, but UST was increased soon after weaning. The VST-UST temperature differences during daytime of sows that were showing behavioural standing heat on 4DPW, 5DPW, 6DPW, and 7DPW were 0.46°C±0.123°C, 0.71°C±0.124°C, 0.66°C ±0.171°C, and 0.58°C±0.223°C, respectively. The NDPW sows had the highest UST observed, but also the lowest VST so that a more negative value of temperature difference (–0.31°C) was seen during first few days post-weaning. A total of 119 sows were observed to show standing heat and were bred. The later the estrus, the smaller the litter size (p = 0.005).Conclusion: Sows which did not show behavior indicative of stable standing heat after weaning had a VST which remained at a lower level, but the UST increased soon after weaning. Therefore, for sow heat detection under field conditions, the changes of VST and UST and difference between the two should be considered together to increase the accuracy of detection.
Over recent decades, Swaziland’s pork industry has been stagnant, failing to meet the domestic demand for pork. It is only in recent years that the number of pig farmers has increased rapidly, with smallholder farmers taking the lead. However, while higher demand for pork could lead to opportunities for growth, with uncertain future markets, increased pig production capacity could subject farmers to extreme market competition and failure to sell their produce. This study used a survey and SWOT analysis to assess the current pig production and market performance of smallholder farms in Swaziland. To quantify SWOT factors, the Analytical Hierarchy Process (AHP) was used to derive priorities for subsequent formulation of potential pig production strategies that are resilient both to market and climate changes. Strategy formulation was based on Porter’s cost leadership strategy. The findings revealed that, currently, the pig industry is attractive, and that the present is probably the best time for smallholder farmers to maximize their profits. Unfortunately, the industry was found to be threatened by the expected increase in production capacity, future market competition, and the socio-environmental challenges associated with expansion. Despite this, the findings suggest that smallholder farmers can survive future market challenges by strategically using agro-industrial by-products as alternative feed ingredients to reduce production cost. The formation of farmers’ associations could benefit smallholder farmers through economies of scale, processing and product value addition, and increased access to markets, and unity could strengthen their position in the market when bargaining for better prices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.