Mortality of fish has been reported in tide pools during warm days. That means that tide pools are potential ecological traps for coastal organisms, which happen when environmental changes cause maladaptive habitat selection. Heat-waves are predicted to increase in intensity, duration and frequency, making it relevant to investigate the role of tide pools as traps for coastal organisms. However, heat waves can also lead to acclimatization. If organisms undergo acclimatization prior to being trapped in tide pools, their survival chances may increase. Common tide pool species (46 species in total) were collected at a tropical and a temperate area and their upper thermal limits estimated. They were maintained for 10 days at their mean summer sea surface temperature +3°C, mimicking a heat-wave. Their upper thermal limits were estimated again, after this acclimation period, to calculate each species’ acclimation response. The upper thermal limits of the organisms were compared to the temperatures attained by tide pool waters to investigate if 1) tide pools could be considered ecological traps and 2) if the increase in upper thermal limits elicited by the acclimation period could make the organisms less vulnerable to this threat. Tropical tide pools were found to be ecological traps for an important number of common coastal species, given that they can attain temperatures higher than the upper thermal limits of most of those species. Tide pools are not ecological traps in temperate zones. Tropical species have higher thermal limits than temperate species, but lower acclimation response, that does not allow them to survive the maximum habitat temperature of tropical tide pools. This way, tropical coastal organisms seem to be, not only more vulnerable to climate warming per se, but also to an increase in the ecological trap effect of tide pools.
To establish effective water quality monitoring strategies in estuaries, it is imperative to identify and understand the main drivers for the variation of water quality parameters. The tidal effect is an important factor of the daily and fortnightly variability in several estuaries. However, the extent of that influence on the different physicochemical and biological parameters is still overlooked in some estuarine systems, such as the Sado Estuary, a mesotidal estuary located on the west coast of Portugal. The main objective of this study was to determine how the water quality parameters of the Sado Estuary varied with the fortnightly and the semidiurnal tidal variation. To achieve this goal, sampling campaigns were conducted in May/18, Nov/18 and Jun/19, under neap and spring tidal conditions, with data collection over the tidal cycle. Results were observed to be significantly influenced by the tidal variation, in a large area of the estuary. Flood seemed to mitigate possible effects of nutrient enrichment in the water column. Additionally, significant differences were also observed when considering the different sampling stations. Temperature, Suspended Particulate Matter (SPM) and nutrients showed the highest values at low water. Lastly, the implications of the tidal variability in the evaluation of the water quality according to Water Framework Directive were also discussed, highlighting the importance of studying short-time scale variations and the worst-case scenario to ensure water quality is maintained. These findings are relevant for the implementation of regional management plans and to promote sustainable development.
The Tagus Estuary is one of the largest estuaries in Europe and merges large urban and industrial areas. Understanding phytoplankton community variability is key for an appropriate assessment of the estuarine ecological status. The objective of the present study was to assess the importance of the tidal influence over the phytoplankton community and to evaluate its main drivers of variation. Weekly sampling was performed at two stations on the Tagus Estuary with different anthropogenic pressures (Alcântara and Barreiro). The sampling covered periods with different tidal amplitude. Alcântara presented both the lowest and highest concentrations of dissolved inorganic nitrogen (DIN) and orthophosphate concentration (DIP), depending on the tidal height. Such high variability in this sampling station is probably due to its proximity to a sewage treatment station outfall and to the estuary mouth. In the present study, both seasonal and tidal variations influenced the chlorophyll a concentration of which the tidal cycle explained up to 50% of the chlorophyll a variations. Chlorophyll a displayed a seasonal trend with two peaks of phytoplankton biomass between spring and mid-summer. The main drivers of chlorophyll a variation were radiation, water temperature, tidal amplitude, salinity, river discharge, and the inorganic nutrients DIN and DSi. The estuarine phytoplankton community was mainly dominated by Bacillariophyceae, especially at Alcântara. Bacillariophyceae were less important at Barreiro, where communities had a higher representation from other phytoplankton groups, such as Cryptophyceae and Prasinophyceae. The drivers of variability in the community composition were similar to those influencing the total biomass. In conclusion, the spring-neap tidal cycle strongly influenced the phytoplankton community, both in terms of biomass and community composition. Of the several tidal conditions, spring tides were the tidal condition that presented both higher biomass and higher Bacillariophyceae representativity in the community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.