Variational quantum algorithms, which consist of optimal parameterized quantum circuits, are promising for demonstrating quantum advantages in the noisy intermediate-scale quantum (NISQ) era. Apart from classical computational resources, different kinds of quantum resources have their contributions in the process of computing, such as information scrambling and entanglement. Characterizing the relation between complexity of specific problems and quantum resources consumed by solving these problems is helpful for us to understand the structure of VQAs in the context of quantum information processing. In this work, we focus on the quantum approximate optimization algorithm (QAOA), which aims to solve combinatorial optimization problems. We study information scrambling and entanglement in QAOA circuits respectively, and discover that for a harder problem, more quantum resource is required for the QAOA circuit to obtain the solution. We note that in the future, our results can be used to benchmark complexity of quantum many-body problems by information scrambling or entanglement accumulation in the computing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.