In this paper, we propose a facile synthetic strategy for uniform bismuth@carbon (Bi@C) core-shell nanowires, which are prepared via controlled pyrolysis of Bi2S3@glucose-derived carbon-rich polysaccharide (GCP) nanowires under an inert atmosphere. Carbonization of GCP and pyrolysis of Bi2S3 into Bi occur at 500 °C and 600 °C, respectively, which increase the specific surface area and the pore volume of the nanowires, thus allowing accommodation of more lithium ions. Meanwhile, the carbon shell serves as a buffer layer to relieve large volume expansion-contraction during the electrochemical alloy formation, and can also efficiently reduce the aggregation of the nanowires. As a proof-of-concept, the Bi@C core-shell nanowire anodes manifest enhanced cycling stability (408 mA h g(-1) after 100 cycles at a current density of 100 mA g(-1)) and rate capacity (240 mA h g(-1) at a current density of 1 A g(-1)), much higher than pure bismuth microparticles and corresponding Bi2S3@C nanowires.
Core-shell structured nanohybrids are currently of significant interest due to their synergetic properties and enhanced performances. However, the restriction of lattice mismatch remains a severe obstacle for heterogrowth of various core-shells with two distinct crystal structures. Herein, a controlled synthesis of lattice-mismatched core-shell TiO2 @MoS2 nano-onion heterostructures is successfully developed, using unilamellar Ti0.87 O2 nanosheets as the starting material and the subsequent epitaxial growth of MoS2 on TiO2 . The formation of these core-shell nano-onions is attributed to an amorphous layer-induced heterogrowth mechanism. The number of MoS2 layers can be well tuned from few to over ten layers, enabling layer-dependent synergistic effects. The core-shell TiO2 @MoS2 nano-onion heterostructures exhibit significantly enhanced energy storage performance as lithium-ion battery anodes. The approach has also been extended to other lattice-mismatched systems such as TiO2 @MoSe2 , thus suggesting a new strategy for the growth of well-designed lattice-mismatched core-shell structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.