This paper carried out burst tests on the carbon and polyvinyl alcohol (PVA) fiber high-strength concrete specimens to investigate the effects of fiber type, fiber content, water content, heating rate and test specimen size on the burst, and the whole burst process of fiber-high concrete was photographed and recorded. The results indicated that fiber addition will improve the high temperature burst behavior of the high-strength concrete, and the performance of PVA is greatly different from that of carbon fiber. The water content and heating rate have little influence on the burst of the PVA test specimen, but they will greatly affect the carbon fiber test specimen. The size of the test specimen has a great influence on the burst. For the PVA concrete test specimen, the large size test specimen bursts on the surface; as for the carbon fiber test specimen, the large size test specimen delays the initial burst time, but the burst becomes fiercer.
The compressive strength of two kinds of lightweight concrete was studied. The results show that the incorporation of EPS can improve the plastic deformation ability of concrete. The effect of EPS on the compressive strength of concrete depends on the amount and particle size of EPS foam. The incorporation of manufactured sand can improve the compressive strength of EPS concrete. The effect of the amount of manufactured sand on the compressive strength of EPS concrete depends on the amount of EPS in concrete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.