Near-infrared brain imaging technology has great potential as a non-invasive, real-time inspection technique. Silicon-tin (SiSn) alloy films could be a promising material for near-infrared brain detectors. This study mainly reports on the structure of amorphous silicon tin alloy thin films by Raman spectroscopy to investigate the influence of doped-Sn on an a-Si network. The variations in TO peak caused by the increase in Sn concentration indicate a decrease in the short-range order of the a-Si network. A model has been proposed to successfully explain the non-linear variation in Raman parameters of ITA/ITO and ILA+LO/ITO. The variations of Raman parameters of the films with a higher deposition temperature indicate the presence of SiSn nanocrystals, though the SiSn nanocrystals present no Raman peaks in Raman spectra. XRD and TEM analysis further illustrate the existence of nanocrystals. The ratio of photo/dark conductivity and optical bandgap results demonstrate that the films can be selected as a sensitive layer material for NIR-II region sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.