This paper proposes a novel hierarchical recurrent neural network language model (HRNNLM) for document modeling. After establishing a RNN to capture the coherence between sentences in a document, HRNNLM integrates it as the sentence history information into the word level RNN to predict the word sequence with cross-sentence contextual information. A two-step training approach is designed, in which sentence-level and word-level language models are approximated for the convergence in a pipeline style. Examined by the standard sentence reordering scenario, HRNNLM is proved for its better accuracy in modeling the sentence coherence. And at the word level, experimental results also indicate a significant lower model perplexity, followed by a practical better translation result when applied to a Chinese-English document translation reranking task.
Purpose This study aims to present an automated guided logistics robot mainly designed for pallet transportation. Logistics robot is compactly designed. It could pick up the pallet precisely and transport the pallet up to 1,000 kg automatically in the warehouse. It could move freely in all directions without turning the chassis. It could work without any additional infrastructure based on laser navigation system proposed in this work. Design/methodology/approach Logistics robot should be able to move underneath and lift up the pallet accurately. Logistics robot mainly consists of two sub-robots, like two forks of the forklift. Each sub-robot has front and rear driving units. A new compact driving unit is compactly designed as a key component to ensure access to the narrow free entry of the pallet. Besides synchronous motions in all directions, the two sub-robots should also perform synchronous lifting up and laying down the pallet. Logistics robot uses a front laser to detect obstacles and locate itself using on-board navigation system. A rear laser is used to recognize and guide the sub-robots to pick up the pallet precisely within ± 5mm/1o in x-/yaw direction. Path planning algorithm under different constraints is proposed for logistics robot to obey the traffic rules of pallet logistics. Findings Compared with the traditional forklift vehicles, logistics robot has the advantages of more compact structure and higher expandability. It can realize the omnidirectional movement flexibly without turning the chassis and take zero-radius turn by controlling compact driving units synchronously. Logistics robot can move collision-free into any pallet that has not been precisely placed. It can plan the paths for returning to charge station and charge automatically. So it can work uninterruptedly for 7 × 24 h. Path planning algorithm proposed can avoid traffic congestion and improve the passability of the narrow roads to improve logistics efficiencies. Logistics robot is quite suitable for the standardized logistics factory with small working space. Originality/value This is a new innovation for pallet transportation vehicle to improve logistics automation.
This work reports a master-slave separate parallel intelligent mobile robot for the fully autonomous transportation of pallets in the smart factory logistics. This separate parallel intelligent mobile robot consists of two independent sub robots, one master robot and one slave robot. It is similar to two forks of the forklift, but the slave robot does not have any physical or mechanical connection with the master robot. A compact driving unit was designed and used to ensure access to the narrow free entry under the pallets. It was also possible for the mobile robot to perform a synchronous pallet lifting action. In order to ensure the consistency and synchronization of the motions of the two sub robots, high-gain observer was used to synchronize the moving speed, the lifting speed and the relative position. Compared with the traditional forklift AGV (Automated Guided Vehicle), the mobile robot has the advantages of more compact structure, higher expandability and safety. It can move flexibly and take zero-radius turn. Therefore, the intelligent mobile robot is quite suitable for the standardized logistics factory with small working space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.