High-quality straight and multiply kinked CdTe nanowires (NWs) were synthesized by the facile chemical vapor deposition method at 600 °C. The as-synthesized NWs were characterized by scanning electron microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and photoluminescence (PL) spectroscopy. The straight CdTe NWs have single crystalline zinc blende structure with growth direction along the ⟨111⟩ direction. Their PL spectra consist only sharp near band edge emission around 824.3 nm. The multiply kinked CdTe NWs contain one or more fixed (∼125.2°) angle joints; each arm of the kinked NWs is single crystalline with similar selected area electron diffraction pattern as that of the straight CdTe NWs. The two growth directions in the multiply kinked CdTe NWs are ⟨200⟩ and ⟨111⟩. Single straight and kinked CdTe NW photoresponse devices were fabricated and testified to have high photocurrent decay ratio, high responsivity, fast response time, and no decay tail under 633 nm He–Ne laser illumination. These straight and multiply kinked CdTe NWs may open up potential applications in the bottom-up integrated nanoelectronic and nanophotonic systems, such as photovoltaic and multiterminal nanodevices etc.
The voltage impulse-induced large, nonvolatile, and tunable magnetization switching in a Ni80Co20/Pb(Mg, Nb)O3-PbTiO3 (PMN-PT) structure was investigated at room temperature. Ni80Co20 was deposited onto a specified PMN-PT substrate with defect dipoles. By exploiting defect dipoles, a distinct and stable strain memory state was achieved at zero electric field. It induces and sustains two distinct magnetization states when removing an electric field via the magnetoelectric coupling effect. Via the detailed x-ray diffraction and piezoresponse force microscopy analyses, the polarization switching pathway and the lattice strain in response to the in situ electric field were investigated to understand the microscopic mechanisms behind the nonvolatile magnetic memory. Furthermore, the impulse electric field can be selected in the range between the coercive field and the saturation field of the PMN-PT, leading to a wide range controlling technique. This work provides a promising way to produce a large and nonvolatile magnetic memory in magnetoelectric heterostructure and is significant for ultra-low-power information storage devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.