Background
Understanding biodiversity patterns and their underlying mechanisms is of interest to ecologists, biogeographers and conservationists and is critically important for conservation efforts. The Indo-Burma hotspot features high species diversity and endemism, yet it also faces significant threats and biodiversity losses; however, few studies have explored the genetic structure and underlying mechanisms of Indo-Burmese species. Here, we conducted a comparative phylogeographic analysis of two closely related dioecious Ficus species, F. hispida and F. heterostyla, based on wide and intensive population sampling across Indo-Burma ranges, using chloroplast (psbA-trnH, trnS-trnG) and nuclear microsatellite (nSSR) markers, as well as ecological niche modeling.
Results
The results indicated large numbers of population-specific cpDNA haplotypes and nSSR alleles in the two species. F. hispida showed slightly higher chloroplast diversity but lower nuclear diversity than F. heterostyla. Low-altitude mountainous areas of northern Indo-Burma were revealed to have high genetic diversity and high habitat suitability, suggesting potential climate refugia and conservation priority areas. Strong phylogeographic structure and a marked east‒west differentiation pattern were observed in both species, due to the interactions between biotic and abiotic factors. Interspecific dissimilarities at fine-scale genetic structure and asynchronized historical dynamics of east‒west differentiation between species were also detected, which were attributed to different species-specific traits.
Conclusions
We confirm hypothesized predictions that interactions between biotic and abiotic factors largely determine the patterns of genetic diversity and phylogeographic structure of Indo-Burmese plants. The east‒west genetic differentiation pattern observed in two targeted figs can be generalized to some other Indo-Burmese plants. The results and findings of this work will contribute to the conservation of Indo-Burmese biodiversity and facilitate targeted conservation efforts for different species.
Silicon (Si) is abundant in the lithosphere, and previous studies have confirmed that silicon plays an important role in plant growth. Higher plants absorb soluble silicon from soil through roots which is deposited in plant tissues mainly in the form of phytoliths. Based on previous studies, the research progress in silicon and phytoliths in the structural protection, enhancement on photosynthesis and transpiration of plants and plant growth and stress resistance was reviewed. Meanwhile, gaps in phytolith research, including phytolith morphology and function, impact of diverse environmental factors coupling with phytoliths, phytolith characteristics at different stages of plant development and phytoliths in regional vegetation are identified. The paper intends to promote the wider application of phytolith research findings and provides reference for further research on phytoliths.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.