A field study was performed to investigate the development of cannabinoids in flowers of industrial hemp using three day-length-sensitive and two day-length-neutral varieties. Flower samples were analyzed for cannabinoids on a weekly basis from 2 to 4 weeks postanthesis to plant senescence. Results indicate that total THC, CBD, and CBG significantly increased as flowers matured, reaching the greatest concentration during 6 to 7 weeks postanthesis. After a plateau stage of varied length for different varieties, the peak concentrations declined as plants senesced. Total THC was above the 0.3% threshold from 4 weeks postanthesis to the end of the growing season for day-length-sensitive varieties, but this only occurred during 6 to 7 weeks postanthesis for day-length-neutral varieties. The CBD/THC ratio in flowers dynamically changed during the entire reproductive stage for all of the evaluated varieties. The current study provides vital information for successful cultivation of industrial hemp.
Oilseed rape (Brassica napus) characteristically has high N uptake efficiency and low N utilization efficiency (NUtE, seed yield/shoot N accumulation). Determining the NUtE phenotype of various genotypes in different growth conditions is a way of finding target traits to improve oilseed rape NUtE. The aim of this study was to compare oilseed rape genotypes grown on contrasting N supply rates in pot and field experiments to investigate the genotypic variations of NUtE and to identify indicators of N efficient genotypes. For 50 oilseed rape genotypes, NUtE, dry matter and N partitioning, morphological characteristics, and the yield components were investigated under high and low N supplies in a greenhouse pot experiment and a field trial. Although the genotype rankings of NUtE were different between the pot experiment and the field trial, some genotypes performed consistently in both two environments. N-responder, N-nonresponder, N-efficient and N-inefficient genotypes were identified from these genotypes with consistent NUtE. The correlations between the pot experiment and the field trial in NUtE were only 0.34 at high N supplies and no significant correlations were found at low N supplies. However, Pearson coefficient correlation (r) and principal component analysis showed NUtE had similar genetic correlations with other traits across the pot and field experiment. Among the yield components, only seeds per silique showed strong and positive correlations with NUtE under varying N supply in both experiments (r = 0.47**; 0.49**; 0.47**; 0.54**). At high and low N supply, NUtE was positively correlated with seed yield (r = 0.45**; 0.53**; 0.39**; 0.87**), nitrogen harvest index (NHI, r = 0.68**; 0.82**; 0.99**; 0.89**), and harvest index (HI, r = 0.79**; 0.83**; 0.90**; 0.78**) and negatively correlated with biomass distribution to stem and leaf (r = −0.34**; −0.45**; −0.37**; 0.62**), all aboveground plant section N concentration (r from −0.30* to −0.80**), N distribution to the vegetative parts (silique husk, stem and leaf) (r from −0.40** to −0.83**). N-efficient (N-responder) genotypes produced more seeds per silique and had significantly higher NHI and HI than did N-inefficient (N-nonresponder) genotypes. In conclusion, across the pot and field experiments, the 50 genotypes had similar underlying traits correlated with NUtE and seeds per silique may be a good indicator of NUtE.
Climate change will drive increased frequencies of extreme climatic events. Despite this, there is little scholarly information on the extent to which waterlogging caused by extreme rainfall events will impact on crop physiological behaviour. To improve the ability to reliably model crop growth and development under soil waterlogging stress, we advanced the process-basis of waterlogging in the farming systems model Agricultural Systems Production Systems sIMulator. Our new mathematical description of waterlogging adequately represented waterlogging stress effects on the development, biomass and grain yield of many commercial Australian barley genotypes. We then used the improved model to examine how optimal flowering periods (OFPs, the point at which long-term abiotic stresses are minimal) change under historical and future climates in waterlogging-prone environments, and found that climate change will reduce waterlogging stress and shift forward OFP (26 d earlier on average across locations). For the emissions scenario representative concentration pathway 8.5 at 2090, waterlogging stresses diminished but this was not enough to prevent substantial yield reduction due to increasingly severe high temperature stress (−35% average reduction in yield across locations, genotypes and sowing dates). It was shown that seasonal waterlogging stress patterns under future conditions will be similar to those occurring historically. Yield reduction caused by waterlogging stress was 6% and 4% on average across sites under historical and future climates. To adapt, both genotypic and management adaptations will be required: earlier sowing and planting waterlogging tolerant genotypes mitigate yield penalty caused by waterlogging by up to 26% and 24% under historical and future climates. We conclude that even though the prevalence of waterlogging in future will diminish, climate change and extreme climatic events will have substantial and perverse effects on the productivity and sustainability of Australian farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.