BackgroundThe association between blood lipids and cognitive function in schizophrenia is still controversial. Thus, the present study aimed to verify the association between various lipid parameters and cognitive impairment in schizophrenic patients and potential lipid pathways.MethodsA total of 447 adult inpatients with schizophrenia were divided into cognitive normal and cognitive impairment groups based on the Mini-Mental State Examination with a cut-off of 26. The blood lipid parameters were defined as abnormal levels based on the guideline. The liquid chromatography-mass spectrometry method was used to preliminarily explore the potential lipid metabolism pathway associated with cognitive impairment.ResultsThere were 368 (82.3%) patients who had cognitive impairment. Herein, apolipoprotein B was positively associated with cognitive function in overall patients and age (≥45 and <45 years) and sex subgroups. After excluding patients with hypertension and diabetes, ApoB was still significantly associated with cognitive function in all the patients. The associations between other lipid parameters, including non-high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglyceride, and cognitive impairment were heterogeneous in age and sex subgroups. In contrast, total cholesterol and apolipoprotein A1 were not significantly associated with cognitive impairment. Metabolomics analysis showed that metabolic pathway mainly involved sphingolipid metabolism. Meanwhile, sphinganine and 3-dehydrosphinganine were positively correlated with lipid parameters and decreased in patients with cognitive impairment as compared to those with normal cognition.ConclusionsThe present study suggests a positive association between lipids and cognitive function in schizophrenic patients and needs to be further verified by a prospective study.
BackgroundThe evidence of the association between parity and risk of mild cognitive impairment (MCI) or dementia is mixed, and the relationship between parity and longitudinal cognitive changes is less clear. We investigated these issues in a large population of older women who were carefully monitored for development of MCI and probable dementia.MethodsUsing the Women’s Health Initiative Memory Study, 7,100 postmenopausal women (mean age 70.1 ± 3.8 years) with information on baseline parity (defined as the number of term pregnancies), measures of global cognition (Modified Mini-Mental State Examination score) from 1996–2007, and cognitive impairment (centrally adjudicated diagnoses of MCI and dementia) from 1996–2016 were included. Multivariable linear mixed-effects models were used to analyze the rate of changes in global cognition. Cox regression models were used to evaluate the risk of MCI/dementia across parity groups.ResultsOver an average of 10.5 years, 465 new cases of MCI/dementia were identified. Compared with nulliparous women, those with a parity of 1–3 and ≥4 had a lower MCI/dementia risk. The HRs were 0.75 (0.56–0.99) and 0.71 (0.53–0.96), respectively (P < 0.01). Similarly, a parity of 1–3 and ≥4 was related to slower cognitive decline (β = 0.164, 0.292, respectively, P < 0.05).ConclusionHigher parity attenuated the future risk for MCI/dementia and slowed the rates of cognitive decline in elderly women. Future studies are needed to determine how parity affects late-life cognitive function in women.
Background The combined effect of serum uric acid (SUA) and blood glucose on cognition has not been explored. This study aimed to examine the separate and combined association of SUA and fasting plasma glucose (FPG) or diabetes mellitus (DM) with cognition in a sample of Chinese middle-aged and elderly population. Methods A total of 6,509 participants aged 45 years or older who participated in the China Health and Retirement Longitudinal Study (CHARLS, 2011) were included. The three cognitive domains assessed were episodic memory, mental status, and global cognition (the sum of the first two terms). Higher scores indicated better cognition. SUA and FPG were measured. The participants were grouped based on SUA and FPG quartiles to evaluate their combined associations of cognition with SUA Q1–Q3 only (Low SUA), with FPG Q4 only (High FPG), without low SUA and high FPG levels (Non), and with low SUA and high FPG levels (Both), multivariate linear regression models were used to analyze their association. Results Lower SUA quartiles were associated with poorer performance in global cognition and episodic memory compared with the highest quartile. Although no association was found between FPG or DM and cognition, high FPG or DM combined with low SUA levels in women (βFPG = -0.983, 95% CI: -1.563–-0.402; βDM = -0.800, 95% CI: -1.369–-0.232) had poorer cognition than those with low SUA level only (βFPG = -0.469, 95% CI: -0.926–-0.013; βDM = -0.667, 95% CI: -1.060–-0.275). Conclusion Maintaining an appropriate level of SUA may be important to prevent cognitive impairment in women with high FPG.
BackgroundPrevious studies involving uric acid (UA) in some specialized disease populations have found that high UA is associated with enhanced patient function. The mechanism to explain this association may be that UA, an important antioxidant, exerts neuroprotective effects. Patients with schizophrenia (SCZ) have severe oxidative stress abnormalities, and cognitive impairment is a major obstacle to their rehabilitation. Only few studies have been conducted on UA and cognitive impairment in SCZ. This study aims to clarify the relationship between UA and cognitive impairment and explore whether UA could be used as a potential biological marker of cognition in SCZ during maintenance period.MethodsA total of 752 cases of SCZ during maintenance period from Baiyun Jingkang Hospital were included. Cognition was measured using the Mini-Mental State Examination scale. UA was measured using the Plus method. The participants were grouped on the basis of UA to evaluate the association of cognition with low-normal (3.50–5.07 mg/dL for men, 2.50–4.19 mg/dL for women), middle-normal (5.07–6.39 mg/dL for men, 4.19–5.18 mg/dL for women), high-normal (6.39–7.00 mg/dL for men, 5.18–6.00 mg/dL for women), and high (>7.00 mg/dL for men, >6.00 mg/dL for women) levels of UA. Multiple logistic regression and linear regression models and restricted cubic spline (RCS) were utilized to evaluate the relationship.ResultsUric acid was positively associated with cognitive function. Subgroup analyses showed that high UA was associated with enhanced cognition in participants with low anticholinergic cognitive burden (ACB).ConclusionUric acid may be used as a simple objective biological indicator to assess cognition in SCZ during maintenance period.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.