The modular multilevel converter (MMC) has become the most promising converter technology for high-voltage direct current (HVDC) transmission systems. However, similar to any other voltage-sourced converter-based HVDC system, MMC-HVDC systems with the half-bridge submodules (SMs) lack the capability of handling dc-side short-circuit faults, which are of severe concern for overhead transmission lines. In this paper, two new SM circuit configurations as well as a hybrid design methodology to embed the dc-fault-handling capability in the MMC-HVDC systems are proposed. By combining the features of various SM configurations, the dc-fault current path through the freewheeling diodes is eliminated and the dc-fault current is enforced to zero. Several MMC configurations based on the proposed hybrid design method and various SM circuits, that is, the half-bridge, the full-bridge, the clamp-double, and the five-level cross-connected SMs, as well as the newly proposed unipolar-voltage full-bridge and three-level cross-connected SMs, are investigated and compared in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements. The studies are carried out based on time-domain simulation in the PSCAD/EMTDC software environment for various SM configurations and dc-fault conditions. The reported study results demonstrate the proposed hybrid-designed MMC-HVDC system based on the combination of the half-bridge and the proposed SM circuits is the optimal design among all evaluated systems in terms of the dc-fault-handing capability, semiconductor power losses, and component requirements.Index Terms-DC-side short-circuit fault, fault clearance, modular multilevel converter (MMC).
The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Executive Services and Communications Directorate (0704-0188). Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.