Hypertension has become the greatest risk factor for death in elderly populations. As factors influencing cardiovascular disease, indoor environmental parameters pose potential risks for older adults. In this study, elderly residents in Dalian (Liaoning Province, China) urban dwellings were selected as the research subjects, and the environmental parameters of the dwellings’ main activity rooms and the blood pressure parameters of the older adults were measured. Based on the Long Short-Term Memory (LSTM) deep learning algorithm and Bayesian fitting method, a hypertension disease model was established using the long-term environmental parameters to predict the hypertension risk of older adults in their building’s environment. The results showed that temperature, humidity, and some air quality parameters had an impact on blood pressure under single environmental factor, and the comprehensive environmental risks of high systolic blood pressure, high diastolic blood pressure, and high blood pressure were 16.44%, 0%, and 16.44% for the male elderly and 14.11%, 7.14%, and 17.55% for the female elderly, respectively. By comparing the results for the blood pressure measurement and prediction, it can be observed that the risk error of hypertension obtained by the algorithm maintains the variables’ relationship, and the result of the algorithm is reliable in this period. This technology can provide a basis for measuring environmental parameters and will be conducive to the development of an ecological smart building environment.
Scholars have underestimated and misunderstood the distinction between Sōtō and Rinzai, the two major branches of Zen Buddhism, because they have either parroted the sectarian polemics of the schools themselves or, as in the case of prominent scholars Carl Bielefeldt and T. P. Kasulis, dismissed these polemics as deriving from institutional politics rather than substantive doctrinal or practical differences. Here it is attempted for the first time to understand the polemics of these two schools as reflecting a real disparity in concept and practice.The psychological concept of manas of the Yogācāra or "mind-only" school, a Buddhist philosophical tradition that is foundational to Mahāyāna Buddhist meditation practice and to Zen, is investigated.This concept is used to explicate the mental mechanics of meditation in order to appreciate the criticisms of classical Zen Masters directed against each other and thereby to understand important conceptual and practical differences between the two schools.
In response to the problems in the signal identification of radiation sources during the communication process, the bispectral quadratic feature model is applied to the identification algorithm for communication signals. According to the signal eigenvalues obtained from the bispectrum of the diagonal slices in the radiation source signals, the eigenvalues of the bispectrum diagonal slices can be extended from the frequency domain to the complex plane through the chirp-z operation in this paper, and the relevant data are obtained based on the bispectrum quadratic feature model of the signals by using the separation rules corresponding to the extended Babbitt distance. The bispectral quadratic feature model method is used to establish a sparse observation model, and the communication signal processing problem can be transformed into an estimation problem of signal motion parameters through the construction of a parametric database. At the same time, the high-resolution distance of communication signals is tested, and the communication signals are estimated by using the variational inference method. Finally, practical cases are analyzed, and the results indicate that the algorithm proposed in this paper can be used to identify different types of communication signals in accordance with simulated and measured data in the processing of communication signals in various environments, which has the certain anti-interference capacity to noise, can improve the identification rate of communication signals, and has verified the effectiveness and practicality of the algorithm proposed in this paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.