A horizontal centrifugal casting experiment was designed to determine the change in the solidification structure of Al-Cu alloy casting and the underlying variation in temperature, then obtained interface heat transfer coefficient by inverse calculation. The continuous simulation of metal melt filling from the gate to copper mold cavity is realized. The influence of centrifugal speed, pouring temperature, and mold preheating temperature on the solidified structure was analyzed. Simulation results showed that increasing the centrifugal speed mainly enhance the solidification rate of the molten metal and then refined the solidified structure of the Al-Cu alloy. Increasing the pouring temperature and mold preheating temperatures coarsen the grain size of the casting, but the range of change is small.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.