Turbofan engines with afterburners usually have variable nozzle throat area, and the nozzle throat area may increase by 50–100% during afterburning. An axisymmetric divergent bypass dual throat nozzle (ADBDTN) can offer high thrust vectoring efficiency without requiring additional secondary flow in the pitch and yaw directions. In this study, a variable ADBDTN configuration with flow adaptive capability, wide nozzle throat area adjustment range, and excellent overall performance was designed and investigated numerically. The nozzle throat and exit area can be controlled mechanically, while thrust vectoring is achieved via fluidic methods. Both the original variable geometry schemes and their corresponding improved schemes, namely, “slider-rocker mechanism & rotation” (SRM-R) and “slider-rocker mechanism & slide” (SRM-S) schemes, along with their improved schemes, were proposed and investigated. Results indicated that compared to the original variable geometry schemes, the nozzle configurations with improved variable geometry schemes not only achieve 50% increase in the nozzle throat area but also acquire flow adaptive capability and excellent overall performance by appropriately adjusting the nozzle exit area. At a nozzle pressure ratio (NPR) of 4.47, the highest thrust coefficient reaches 0.940; the largest pitch thrust-vector angle is 19.52 deg; and the discharge coefficients are 0.968 and 0.970 under the nonafterburning and afterburning states, respectively. In addition, compared to the improved SRM-R scheme, the nozzle configuration with improved SRM-S scheme possesses better overall performance.
Abstract. With the advent of the learning society, the important mission of school education is to train students to become independent learners, so that they can continue to update themselves. Better ourselves and meet the challenge. Therefore, teachers Students' Ability to learn new curriculum development has become an inevitable requirement in the teaching process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.