This study introduces a multiple-input convolutional neural network (MI-CNN) model for the seismic damage assessment of regional buildings. First, ground motion sequences together with building attribute data are adopted as inputs of the proposed MI-CNN model. Second, the prediction accuracy of MI-CNN model is discussed comprehensively for different scenarios. The overall prediction accuracy is 79.7%, and the prediction accuracies for all scenarios are above 77%, indicating a good prediction performance of the proposed method. The computation efficiency of the proposed method is 340 times faster than that of the nonlinear multi-degree-of-freedom shear model using time history analysis. Third, a case study is conducted for reinforced concrete (RC) frame buildings in Shenzhen city, and two seismic scenarios (i.e., M6.5 and M7.5) are studied for the area. The simulation results of the area indicate a good agreement between the MI-CNN model and the benchmark model. The outcomes of this study are expected to provide a useful reference for timely emergency response and disaster relief after earthquakes.
This study presents a machine learning-based method for the destructive power assessment of earthquake to structures. First, the analysis procedure of the method is presented, and the backpropagation neural network (BPNN) and convolutional neural network (CNN) are used as the machine learning algorithms. Second, the optimized BPNN architecture is obtained by discussing the influence of a different number of hidden layers and nodes. Third, the CNN architecture is proposed based on several classical deep learning networks. To build the machine learning models, 50,570 time-history analysis results of a structural system subjected to different ground motions are used as training, validation, and test samples. The results of the BPNN indicate that the features extraction method based on the short-time Fourier transform (STFT) can well reflect the frequency-/time-domain characteristics of ground motions. The results of the CNN indicate that the CNN exhibits better accuracy (R2 = 0.8737) compared with that of the BPNN (R2 = 0.6784). Furthermore, the CNN model exhibits remarkable computational efficiency, the prediction of 1000 structures based on the CNN model takes 0.762 s, while 507.81 s are required for the conventional time-history analysis (THA)-based simulation. Feature visualization of different layers of the CNN reveals that the shallow to deep layers of the CNN can extract the high to low-frequency features of ground motions. The proposed method can assist in the fast prediction of engineering demand parameters of large-number structures, which facilitates the damage or loss assessments of regional structures for timely emergency response and disaster relief after earthquake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.