Abstract. Carbon transport in river systems is an important component of the global carbon cycle. Most rivers of the world act as atmospheric CO2 sources due to high riverine CO2 partial pressure (pCO2). By determining the pCO2 from alkalinity and pH, we investigated its spatial and temporal variation in the Yellow River watershed using historical water chemistry records (1950s–1984) and recent sampling along the mainstem (2011–2012). Except the headwater region where the pCO2 was lower than the atmospheric equilibrium (i.e. 380 μatm), river waters in the remaining watershed were supersaturated with CO2. The average pCO2 for the watershed was estimated at 2810 ± 1985 μatm, which is 7-fold the atmospheric equilibrium. As a result of severe soil erosion and dry climate, waters from the Loess Plateau in the middle reaches had higher pCO2 than that from the upper and lower reaches. From a seasonal perspective, the pCO2 varied from about 200 μatm to > 30 000 μatm with higher pCO2 usually occurring in the dry season and lower pCO2 in the wet season (at 73% of the sampling sites), suggesting the dilution effect of water. While the pCO2 responded exponentially to total suspended solids (TSS) export when the TSS concentration was less than 100 kg m−3, it decreased slightly and remained stable if the TSS concentration exceeded 100 kg m−3. This stable pCO2 is largely due to gully erosion that mobilizes subsoils characterized by low organic carbon for decomposition. In addition, human activities have changed the pCO2 dynamics. Particularly, flow regulation by dams can diversely affect the temporal changes of pCO2, depending on the physiochemical properties of the regulated waters and adopted operation scheme. Given the high pCO2 in the Yellow River waters, large potential for CO2 evasion is expected and warrants further investigation.
River ecosystems contribute significantly to CO2 emissions. However, estimates of global riverine CO2 emissions remain greatly uncertain owing to the absence of a comprehensive and spatially resolved CO2 emission measurement. Based on intensive field measurements using floating chambers, riverine CO2 evasion in the Wuding River catchment on the Loess Plateau was investigated. Lateral carbon derived from soil respiration and chemical weathering played a central role in controlling the variability of riverine CO2 partial pressure (pCO2). In addition, in‐stream processing of allochthonous organic carbon was an also important source of CO2 excess, modulating the influence of lateral carbon inputs. All the surveyed streams were net CO2 sources, exhibiting pronounced spatial and seasonal variabilities. The mean CO2 efflux was 172, 116, and 218 mmol m−2 d−1 in spring, summer, and autumn, respectively. Unlike the commonly observed strongest CO2 emissions in headwater streams, the increasing CO2 efflux with stream order in the Wuding River catchment reflects its unique geomorphologic landscape in controlling CO2 emissions. While in reservoirs, the pCO2 was more controlled by primary production with aquatic photosynthetic assimilation constraining it to a lower level. Both the magnitude and direction of CO2 evasion from reservoirs have been greatly altered. Contrast to streams with large CO2 effluxes, reservoirs were small carbon sources and even carbon sinks, due primarily to greatly reduced turbulence and enhanced photosynthesis. In view of the large number of reservoirs on the Loess Plateau, assessing the resulting changes to CO2 emissions and their implications for regional carbon budgets warrants further research.
CO 2 outgassing across water-air interface is an important, but poorly quantified, component of riverine carbon cycle, largely because the data needed for flux calculations are spatially and temporally sparse. Based on compiled data sets measured throughout the Yellow River watershed and chamber measurements on the main stem, this study investigates CO 2 evasion and assesses its implications for riverine carbon cycle. Fluxes of CO 2 evasion present significant spatial and seasonal variations. High effluxes are estimated in regions with intense rock weathering or severe soil erosion that mobilizes organic carbon into the river network. By integrating seasonal changes of water surface area and gas transfer velocity (k), the CO 2 efflux is estimated at 7.9 ± 1.2 Tg C yr À1 with a mean k of 42.1 ± 16.9 cm h À1. Unlike in lake and estuarine environments where wind is the main generator of turbulence, k is more correlated with flow velocity changes. CO 2 evasion in the Yellow River network constitutes an important pathway in its riverine carbon cycling. Analyzing the watershed-scale carbon budget indicates that 35% of the carbon exported into the Yellow River network from land is degassed during fluvial transport. The CO 2 efflux is comparable to the carbon burial rate, while both larger than the fluvial export to the ocean. Comparing CO 2 evasion with ecosystem productivity in the Yellow River watershed shows that its ecosystem carbon sink has previously been overestimated by >50%. Present efflux estimates are associated with uncertainty, and future work is needed to mechanistically understand CO 2 evasion from the highly turbid waters.
Abstract. Human activities are drastically altering water and material flows in river systems across Asia. These anthropogenic perturbations have rarely been linked to the carbon (C) fluxes of Asian rivers that may account for up to 40–50 % of the global fluxes. This review aims to provide a conceptual framework for assessing the human impacts on Asian river C fluxes, along with an update on anthropogenic alterations of riverine C fluxes. Drawing on case studies conducted in three selected rivers (the Ganges, Mekong, and Yellow River) and other major Asian rivers, the review focuses on the impacts of river impoundment and pollution on CO2 outgassing from the rivers draining South, Southeast, and East Asian regions that account for the largest fraction of river discharge and C exports from Asia and Oceania. A critical examination of major conceptual models of riverine processes against observed trends suggests that to better understand altered metabolisms and C fluxes in “anthropogenic land-water-scapes”, or riverine landscapes modified by human activities, the traditional view of the river continuum should be complemented with concepts addressing spatial and temporal discontinuities created by human activities, such as river impoundment and pollution. Recent booms in dam construction on many large Asian rivers pose a host of environmental problems, including increased retention of sediment and associated C. A small number of studies that measured greenhouse gas (GHG) emissions in dammed Asian rivers have reported contrasting impoundment effects: decreased GHG emissions from eutrophic reservoirs with enhanced primary production vs. increased emissions from the flooded vegetation and soils in the early years following dam construction or from the impounded reaches and downstream estuaries during the monsoon period. These contrasting results suggest that the rates of metabolic processes in the impounded and downstream reaches can vary greatly longitudinally over time as a combined result of diel shifts in the balance between autotrophy and heterotrophy, seasonal fluctuations between dry and monsoon periods, and a long-term change from a leaky post-construction phase to a gradual C sink. The rapid pace of urbanization across southern and eastern Asian regions has dramatically increased municipal water withdrawal, generating annually 120 km3 of wastewater in 24 countries, which comprises 39 % of the global municipal wastewater production. Although municipal wastewater constitutes only 1 % of the renewable surface water, it can disproportionately affect the receiving river water, particularly downstream of rapidly expanding metropolitan areas, resulting in eutrophication, increases in the amount and lability of organic C, and pulse emissions of CO2 and other GHGs. In rivers draining highly populated metropolitan areas, lower reaches and tributaries, which are often plagued by frequent algal blooms and pulsatile CO2 emissions from urban tributaries delivering high loads of wastewater, tended to exhibit higher levels of organic C and the partial pressure of CO2 (pCO2) than less impacted upstream reaches and eutrophic impounded reaches. More field measurements of pCO2, together with accurate flux calculations based on river-specific model parameters, are required to provide more accurate estimates of GHG emissions from the Asian rivers that are now underrepresented in the global C budgets. The new conceptual framework incorporating discontinuities created by impoundment and pollution into the river continuum needs to be tested with more field measurements of riverine metabolisms and CO2 dynamics across variously affected reaches to better constrain altered fluxes of organic C and CO2 resulting from changes in the balance between autotrophy and heterotrophy in increasingly human-modified river systems across Asia and other continents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.