Hydrogen (H2) sensors are of great significance in hydrogen energy development and hydrogen safety monitoring. However, achieving fast and effective detection of low concentrations of hydrogen is a key problem to be solved in hydrogen sensing. In this work, we combined the excellent gas sensing properties of tin(IV) oxide (SnO2) and zinc oxide (ZnO) with the outstanding electrical properties of reduced graphene oxide (rGO) and prepared palladium (Pd)-doped rGO/ZnO-SnO2 nanocomposites by a hydrothermal method. The crystal structure, structural morphology, and elemental composition of the material were characterized by FE-SEM, TEM, XRD, XPS, Raman spectroscopy, and N2 adsorption–desorption. The results showed that the Pd-doped ZnO-SnO2 composites were successfully synthesized and uniformly coated on the surface of the rGO. The hydrogen gas sensing performance of the sensor prepared in this work was investigated, and the results showed that, compared with the pure Pd-doped ZnO-SnO2 sensor, the Pd-doped rGO/ZnO-SnO2 sensor modified with 3 wt% rGO had better hydrogen (H2)-sensing response of 9.4–100 ppm H2 at 380 °C. In addition, this sensor had extremely low time parameters (the response time and recovery time for 100 ppm H2 at 380 °C were 4 s and 8 s, respectively) and an extremely low detection limit (50 ppb). Moreover, the sensor exhibited outstanding repeatability and restoration. According to the analysis of the sensing mechanism of this nanocomposite, the enhanced sensing performance of the Pd-doped rGO/ZnO-SnO2 sensor is mainly due to the heterostructure of rGO, ZnO, and SnO2, the excellent electrical and physical properties of rGO and the synergy between rGO and Pd.
A combination of different gelators provides a pursuable way to create oleogels with enhanced properties. In this work, high oleic sunflower oil was structured using monoglycerides (MGs), waxes (carnauba wax, beeswax, candelilla wax, rice bran wax), and their mixtures, aiming at investigating the effects of compounding MG with wax on microstructures, the gelation process, and physicochemical and digestion properties of resultant oleogels. Compounding MG with wax leads to different oleogel properties of either only MG or only wax selected. During the gelation process, the onset of crystallization and gelation in compound systems is only controlled by the MG, while waxes are responsible for enhancing the basic network of MG crystals at low temperatures. The final elasticity of compound oleogels seems to be more affected by wax. Under optimal formulations, an oleogel with delayed digestion and stronger mechanical properties was obtained. The enhanced properties, mainly, arise from hydrogen bonding and a denser crystal network.
In modern societies, the air quality in vehicles has received extensive attention because a lot of time is spent within the indoor air compartment of vehicles. In order to further understand the level of air quality under different conditions in new vehicles, the vehicle interior air quality (VIAQ) in new vehicles with three different brands was investigated under static and driving conditions, respectively. Air sampling and analysis are conducted under the requirement of HJ/T 400-2007. Static vehicle tests demonstrate that with the increasing of vehicle interior air temperature in sunshine conditions, a higher concentration and different types of volatile organic compounds (VOCs) release from the interior materials than that in the environment test chamber, including alkanes, alcohols, ketones, benzenes, alkenes, aldehydes, esters and naphthalene. Driving vehicle tests demonstrate that the concentration of VOCs and total VOCs (TVOC) inside vehicles exposed to high temperatures will be reduced to the same level as that in the environment test chamber after a period of driving. The air pollutants mainly include alkanes and aromatic hydrocarbons. However, the change trends of VOCs and TVOC vary under different conditions according to various kinds of factors, such as vehicle model, driving speed, air exchange rate, temperature, and types of substance with different boiling points inside the vehicles.
Air microfluidic circuits have been widely concerned in the separation of atmospheric particulate matter, especially for portable particulate matter separation detection devices. Currently, no systematic approach for the design and optimization of an air-microfluidic system for PM separation has been reported in the literature. In this paper, a two-stage air microfluidic circuit is designed. The design process is divided into two stages: first, the preliminary design of the structure is completed according to aerodynamic theory. Then, the influences of various factors (such as flow channel width, tilt angle, flow rate, etc.) on the collection efficiency and particle wall loss are explored through numerical analysis to complete the optimization design of the structure. Finally, the air microfluidic circuit is prepared by MEMS processing technology and the particulate matter separation experiments are carried out. The developed two-stage air microfluidic circuit can realize the efficient separation of PM10 and PM2.5. Thus, the important factors affecting the collection efficiency and particle wall loss of air microfluidic circuit are clarified, and a systematic design theory method is formed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.