A dynamic model of the rotating shrouded blade is established, considering the shroud mass, the Coriolis force, and the centrifugal stiffening effect. And a macroslip model of dry friction with variable normal load is established to simulate the separation-contact-stick-slip state of the shroud. The Lagrangian equation is utilized to solve the differential motion equation, and the Galerkin method is used for discretization. The influence of shroud structure’s parameters such as rotational speed, contact angle, friction coefficient, clearance, and shroud position on the damping effect of the shroud is reviewed by means of amplitude-frequency response and energy through the Newmark-β numerical method. The results demonstrate that the damping effect of the shroud by contact is more obvious than by friction and the amplitude-frequency curve of the shrouded blade shows a strong hard nonlinear phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.