Background
Successful human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to human oocyte maturation arrest are unknown.
Methods
We recruited a rare four-generation family with female infertility as a consequence of oocyte meiosis I arrest. We applied whole-exome and direct Sanger sequencing to an additional 23 patients following identification of mutations in a candidate gene, TUBB8. Expression of TUBB8 and all other β-tubulin isotypes was measured in human oocytes, early embryos, sperm cells and several somatic tissues by qRT-PCR. The effect of the TUBB8 mutations was assessed on α/β tubulin heterodimer assembly in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes via microinjection of the corresponding cRNAs.
Results
We identified seven mutations in the primate-specific gene TUBB8 that are responsible for human oocyte meiosis I arrest in seven families. TUBB8 expression is unique to oocytes and the early embryo, where this gene accounts for almost all of the expressed β-tubulin. The mutations affect the chaperone-dependent folding and assembly of the α/β-tubulin heterodimer, induce microtubule chaos upon expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle assembly defects and maturation arrest upon expression in mouse and human oocytes.
Conclusions
TUBB8 mutations function via dominant negative effects that massively disrupt proper microtubule behavior. TUBB8 is a key gene involved in human oocyte meiotic spindle assembly and maturation.
Interleukin (IL)-6 deficient mice develop mature-onset obesity. Furthermore, i.c.v. administration of IL-6 increases energy expenditure, suggesting that IL-6 centrally regulates energy homeostasis. To investigate whether it would be possible for IL-6 to directly influence the energy homeostasis via hypothalamic regulation in humans and rodents, we mapped the distribution of the ligand binding IL-6 receptor α (IL-6Rα) in this brain region. In the human hypothalamus, IL-6Rα-immunoreactivity was detected in perikarya and first-order dendrites of neurones. The IL-6Rα-immunoreactive (-IR) neurones were observed posterior to the level of the interventricular foramen. There, IL-6Rα-IR neurones were located in the lateral hypothalamic, perifornical, dorsal and posterior hypothalamic areas, the hypothalamic dorsomedial nucleus and in the zona incerta. In the caudal part of the hypothalamus, the density of the IL-6Rα-IR neurones gradually increased. Double-labelling immunofluorescent studies demonstrated that IL-6Rα immunoreactivity was localised in the same neurones as the orexigenic neuropeptide, melanin-concentrating hormone (MCH). By contrast, IL-6Rα-immunoreactivity was not observed in the orexin B-IR neurones. To determine whether the observed expression of IL-6Rα is evolutionary conserved, we studied the co-localisation of IL-6Rα with MCH and orexin in the mouse hypothalamus, where IL-6Rα-immunoreactivity was present in numerous MCH-IR and orexin-IR neurones. Our data demonstrate that the MCH neurones of the human hypothalamus, as well as the MCH and orexin neurones of the mouse hypothalamus, contain IL-6Rα. This opens up the possibility that IL-6 influences the energy balance through the MCH neurones in humans, and both MCH and orexin neurones in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.