We report an intermediate regime between c.w. emission and noise-like pulses (NLPs) regime in an Er-doped partially mode-locked fiber laser with nonlinear polarization rotation. In this regime, the soliton bunches stochastically turn up from a quasi-cw background in the Q-switched-like envelope. The soliton bunches normally last for tens or hundreds of intracavity round-trips. When the soliton bunches vanish, typical NLPs chains are generated sporadically at location where the soliton bunches collapses. These results would be helpful to understand the generation and property of the NLPs regime.
We experimentally observe soliton self-organization and pulsation in a passively mode-locked fiber laser. The optomechanical interaction in the optical fiber is key to the formation of equidistant soliton bunches. These solitons simultaneously undergo a pulsation process with a period corresponding to tens of the cavity round trip time. Using the dispersive Fourier transformation technique, we find that the Kelly sidebands in the shot-to-shot spectra appear periodically, synchronizing with the pulsation.
AbstractWe experimentally investigated the soliton collisions between soliton molecules and deuterogenic solitons spontaneously generated on the continuous wave (cw) noise background in an ultrafast erbium-doped fiber laser mode locked with MoS2 saturable absorber (SA). The dynamics of the soliton collisions were observed using the time-stretch dispersion Fourier transform technique. The noise-induced deuterogenic solitons first undergo spectral broadening and wavelength shifting, then collide successively with a soliton molecule and eventually vanish. Within the simple collision framework, the spectral-temporal dynamics of soliton collision would help to unveil the self-stabilization mechanism of the soliton molecules in consideration of dispersive wave shedding. This nonlinear dynamics is similar to the soliton rain, except that complex condensed soliton phase is substituted with a soliton molecule.
We report on a noise-like pulse (NLP) generation in a mode-locked erbium-doped all-fiber laser using a WS2-deposited microfiber saturable absorber (SA). The prepared WS2 SA can serve as an excellent mode-locked and highly nonlinear device in the all-fiber laser cavity. At proper pump power and polarization states, typical NLPs can be generated. Adjusting the polarization also yields special NLPs with second-order harmonic mode-locking. For typical NLPs, 37 mW maximum output power and 8.8 nJ pulse energy are achieved at 334 mW pump power. The microfiber-based WS2 component could be a potential device for exploring nonlinear dynamics, such as NLPs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.