The present study was designed to investigate whether microRNAs (miRNAs) are involved in atrioventricular block (AVB) in the setting of myocardial ischemia (MI). A cardiac-specific miR-1 transgenic (Tg) mouse model was successfully established for the first time in this study using microinjection. miR-1 level was measured by real-time qRT-PCR. Whole-cell patch clamp was employed to record L-type calcium current (ICa,L) and inward rectifier K+ current (IK1). Expression of connexin 43 (Cx43) protein was determined by western blot analysis. Alternations of [Ca2+]i was detected by laser scanning confocal microscopy in ventricular myocytes. The incidence of AVB was higher in miR-1 Tg mice than that in wild-type (WT) mice. The normalized peak current amplitude of ICa,L was lower in ventricular myocytes from miR-1 Tg mice as compared with WT mice. Similarly, the current density of IK1 was decreased in miR-1 Tg mice than that in WT mice. Compared with WT mice, miR-1 Tg mice exhibited a significant decrease of the systolic [Ca2+]i in ventricular myocytes but a prominent increase of the resting [Ca2+]i. Moreover, Cx43 protein was downregulated in miR-1 Tg mice compared to that in WT mice. Administration of LNA-modified antimiR-1 reversed all the above changes. miR-1 overexpression may contribute to the increased susceptibility of the heart to AVB, which provides us novel insights into the molecular mechanisms underlying ischemic cardiac arrhythmias.
Hypoxia-inducible factor-1 alpha (HIF-1α) is a central transcriptional regulator of hypoxic response. The present study was designed to investigate the role of HIF-1α in mild hypoxia-induced cardiomyocytes hypertrophy and its underlying mechanism. Mild hypoxia (MH, 10% O2) caused hypertrophy in cultured neonatal rat cardiac myocytes, which was accompanied with increase of HIF-1α mRNA and accumulation of HIF-1α protein in nuclei. Transient receptor potential canonical (TRPC) channels including TRPC3 and TRPC6, except for TRPC1, were increased, and Ca2+-calcineurin signals were also enhanced in a time-dependent manner under MH condition. MH-induced cardiomyocytes hypertrophy, TRPC up-regulation and enhanced Ca2+-calcineurin signals were inhibited by an HIF-1α specific blocker, SC205346 (30 μM), whereas promoted by HIF-1α overexpression. Electrophysiological voltage-clamp demonstrated that DAG analogue, OAG (30 μM), induced TRPC current by as much as 170% in neonatal rat cardiomyocytes overexpressing HIF-1α compared to negative control. These results implicate that HIF-1α plays a key role in development of cardiac hypertrophy in responses to hypoxic stress. Its mechanism is associated with up-regulating TRPC3, TRPC6 expression, activating TRPC current and subsequently leading to enhanced Ca2+-calcineurin signals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.