Quinoa (Chenopodium quinoa) is a well-known climate-resilient crop and has been introduced into multiple marginal lands across the world, including China, to improve food security and/or balanced nutrient supplies. Conventional breeding has been widely applied in the selection and breeding of quinoa varieties in China since 1980s; however, few studies have been implemented on the genetic variances among different varieties developed by diversity breeding objectives. In this study, the phenotypic and genetic differences between two varieties (Longli-4 and CA3-1) from China were systematically analyzed. A total of 407,651 and 2,731,411 single nucleotide polymorphisms (SNPs) and 212,724 and 587,935 small insertion and deletion (INDELs) were detected for Longli-4 and CA3-1, respectively, when compared with the reference genome of PI614886. The SNPs/INDELs were unevenly distributed across each chromosome for both varieties. There were 143,996 SNPs and 83,410 INDELs shared between Longli-4 and CA3-1, accounting for 4% of the total variances. The variation was then screened based on the SNP effects. There were 818 and 73 genes with the variety-specific non-synonymous and stop-gain variation in Longli-4, whereas there were 13,701 and 733 genes in CA3-1. Specifically, 3501 genes with the non-synonymous variation and 74 genes with the stop-gain variation were found in both Longli-4 and CA3-1. These results suggest that convergent selection occurred during the different breeding processes. A set of candidate genes related to agronomic traits and domestication were further selected to detect the genetic divergence in detail in the two varieties. Only one domestication gene was identified having Longli-4-specific stop-gain variation. Twelve candidate genes related to betalain (1), flowering (4), seed size (2), domestication (1), and saponin (4) were identified having CA3-1-specific stop-gain variation. Interestingly, one seed size gene homologous of CKX1 (cytokinin oxidase/dehydrogenase 1) had the stop-gain variation in both varieties. This research will therefore provide guidance for the molecular-assisted breeding in quinoa.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.