We introduce the fractional-order derivatives into an HIV infection model with nonlinear incidence and show that the established model in this paper possesses nonnegative solution, as desired in any population dynamics. We also deal with the stability of the infection-free equilibrium, the immune-absence equilibrium, and the immune-presence equilibrium. Numerical simulations are carried out to illustrate the results.
In this paper, on the basis of the simplified two-dimensional virus infection dynamics model, we propose two extended models that aim at incorporating the influence of activation-induced apoptosis which directly affects the population of uninfected cells. The theoretical analysis shows that increasing apoptosis plays a positive role in control of virus infection. However, after being included the third population of cytotoxic T lymphocytes immune response in HIV-infected patients, it shows that depending on intensity of the apoptosis of healthy cells, the apoptosis can either promote or comfort the long-term evolution of HIV infection. Further, the discrete-time delay of apoptosis is incorporated into the pervious model. Stability switching occurs as the time delay in apoptosis increases. Numerical simulations are performed to illustrate the theoretical results and display the different impacts of a delay in apoptosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.