These materials are no dopes: Nitrogen‐doped ordered mesoporous graphitic arrays (NOMGAs) prepared by a metal‐free procedure exhibited higher electrocatalytic activity than the commercially available Pt–C catalyst (see plot), excellent long‐term stability, and resistance to crossover effects in the oxygen‐reduction reaction (ORR). Graphite‐like nitrogen atoms appear to be responsible for the excellent electrochemical performance in the ORR.
Carbon lights up: A facile chemical method yields multicolor photoluminescent carbon dots derived from polymer/silica nanocomposites, which were prepared using surfactant-modified silica spheres as carriers and resols (phenol/formaldehyde resins) as carbon precursor (see picture). The surface-passivated carbon dots show good biocompatibility as potential bioimaging agents offering nanometer-scale resolution.
Multicolor photoluminescent graphene quantum dots (GQDs) with a uniform size of ∼60 nm diameter and 2-3 nm thickness were prepared by using unsubstituted hexa-peri-hexabenzocoronene as the carbon source. This result offers a new strategy to fabricate monodispersed GQDs with well-defined morphology.
Highly ordered mesoporous polymer-silica and carbon-silica nanocomposites with interpenetrating networks have been successfully synthesized by the evaporation-induced triconstituent co-assembly method, wherein soluble resol polymer is used as an organic precursor, prehydrolyzed TEOS is used as an inorganic precursor, and triblock copolymer F127 is used as a template. It is proposed for the first time that ordered mesoporous nanocomposites have "reinforced concrete"-structured frameworks. By adjusting the initial mass ratios of TEOS to resol, we determined the obtained nanocomposites possess continuous composition with the ratios ranging from zero to infinity for the two constituents that are "homogeneously" dispersed inside the pore walls. The presence of silicates in nanocomposites dramatically inhibits framework shrinkage during the calcination, resulting in highly ordered large-pore mesoporous carbon-silica nanocomposites. Combustion in air or etching in HF solution can remove carbon or silica from the carbon-silica nanocomposites and yield ordered mesoporous pure silica or carbon frameworks. The process generates plenty of small pores in carbon or/and silica pore walls. Ordered mesoporous carbons can then be obtained with large pore sizes of approximately 6.7 nm, pore volumes of approximately 2.0 cm(3)/g, and high surface areas of approximately 2470 m(2)/g. The pore structures and textures can be controlled by varying the sizes and polymerization degrees of two constituent precursors. Accordingly, by simply tuning the aging time of TEOS, ordered mesoporous carbons with evident bimodal pores at 2.6 and 5.8 nm can be synthesized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.