Glioblastoma multiforme (GBM), one of the deadliest forms of human cancer, is characterized by its high infiltration capacity, partially regulated by the neural extracellular matrix (ECM). A major limitation in developing effective treatments is the lack of in vitro models that mimic features of GBM migration highways. Ideally, these models would permit tunable control of mechanics and chemistry to allow the unique role of each of these components to be examined. To address this need, we developed aligned nanofiber biomaterials via core–shell electrospinning that permit systematic study of mechanical and chemical influences on cell adhesion and migration. These models mimic the topography of white matter tracts, a major GBM migration ‘highway’. To independently investigate the influence of chemistry and mechanics on GBM behaviors, nanofiber mechanics were modulated by using different polymers (i.e., gelatin, poly(ethersulfone), poly(dimethylsiloxane)) in the ‘core’ while employing a common poly(ε-caprolactone) (PCL) ‘shell’ to conserve surface chemistry. These materials revealed GBM sensitivity to nanofiber mechanics, with single cell morphology (Feret diameter), migration speed, focal adhesion kinase (FAK) and myosin light chain 2 (MLC2) expression all showing a strong dependence on nanofiber modulus. Similarly, modulating nanofiber chemistry using extracellular matrix molecules (i.e., hyaluronic acid (HA), collagen, and Matrigel) in the ‘shell’ material with a common PCL ‘core’ to conserve mechanical properties revealed GBM sensitivity to HA; specifically, a negative effect on migration. This system, which mimics the topographical features of white matter tracts, should allow further examination of the complex interplay of mechanics, chemistry, and topography in regulating brain tumor behaviors.
Real-time, continuous monitoring of local oxygen contents at the cellular level is desirable both for the study of cancer cell biology and in tissue engineering. In this paper, we report the successful fabrication of polydimethylsiloxane (PDMS) nanofibers containing oxygen-sensitive probes by electrospinning and the applications of these fibers as optical oxygen sensors for both gaseous and dissolved oxygen. A protective ‘shell’ layer of polycaprolactone (PCL) not only maintains the fiber morphology of PDMS during the slow curing process but also provides more biocompatible surfaces. Once this strategy was perfected, tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) (Ru(dpp)) and platinum octaethylporphyrin (PtOEP) were dissolved in the PDMS core and the resulting sensing performance established. These new core-shell sensors containing different sensitivity probes showed slight variations in oxygen response but all exhibited excellent Stern-Volmer linearity. Due in part to the porous nature of the fibers and the excellent oxygen permeability of PDMS, the new sensors show faster response (<0.5 s) −4–10 times faster than previous reports – than conventional 2D film-based oxygen sensors. Such core-shell fibers are readily integrated into standard cell culture plates or bioreactors. The photostability of these nanofiber-based sensors was also assessed. Culture of glioma cell lines (CNS1, U251) and glioma-derived primary cells (GBM34) revealed negligible differences in biological behavior suggesting that the presence of the porphyrin dyes within the core carries with it no strong cytotoxic effects. The unique combination of demonstrated biocompatibility due to the PCL ‘shell’ and the excellent oxygen transparency of the PDMS core makes this particular sensing platform promising for sensing in the context of biological environments.
Molecular oxygen has profound effects on cell and tissue viability. Relevant sensor forms that can rapidly determine dissolved oxygen levels under biologically relevant conditions provide critical metabolic information. Using 0.5 μm diameter electrospun polycaprolactone (PCL) fiber containing an oxygen-sensitive probe, tris (4,7-diphenyl-1,10-phenanthroline) ruthenium(II) dichloride, we observed a response time of 0.9±0.12 seconds – 4–10 times faster than previous reports – while the t95 for the corresponding film was more than two orders of magnitude greater. Interestingly, the response and recovery times of slightly larger diameter PCL fibers were 1.79±0.23 s and 2.29±0.13 s, respectively, while the recovery time was not statistically different likely due to the more limited interactions of nitrogen with the polymer matrix. A more than 10-fold increase in PCL fiber diameter reduces oxygen sensitivity while having minor effects on response time; conversely, decreases in fiber diameter to less than 0.5 μm would likely decrease response times even further. In addition, a 50°C heat treatment of the electrospun fiber resulted in both increased Stern-Volmer slope and linearity likely due to secondary recrystallization that further homogenized the probe microenvironment. At exposure times up to 3600 s in length, photobleaching was observed but was largely eliminated by the use of either polyethersulfone (PES) or a PES-PCL core-shell composition. However, this resulted in 2- and 3-fold slower response times. Finally, even the non-core shell compositions containing the Ru oxygen probe result in no apparent cytotoxicity in representative glioblastoma cell populations.
Biomimetic polymer nanofibers integrate sensing capabilities creating utility across many biological and biomedical applications. We created fibers consisting of either a poly(ether sulfone) (PES) or a polysulfone (PSU) core coated by a biocompatible polycaprolactone (PCL) shell to facilitate cell attachment. Oxygen sensitive luminescent probes Pt(II) meso-tetra(pentafluorophenyl)porphine (PtTFPP) or Pd(II) meso-tetra(pentafluorophenyl)porphine (PdTFPP), were incorporated in the core via single-step coaxial electrospinning providing superior sensitivity, high brightness, linear response, and excellent stability. Both PES−PCL and PSU−PCL fibers provide more uniform probe distribution than polydimethylsiloxane (PDMS). PSU-based sensing fibers possessed optimum sensitivity due to their relatively higher oxygen permeability. During exposure to 100% nitrogen and 100% oxygen, PES−PCL fiber displayed an I 0 /I 100 value of 6.7; PSU−PCL exhibited a value of 8.9 with PtTFPP as the indicator. In contrast, PdTFPP-containing fibers possess higher sensitivity due to the long porphyrin lifetime. The corresponding I 0 /I 100 values were 80.6 and 106.7 for the PES−PCL and PSU−PCL matrices, respectively. The response and recovery times were 0.24/0.39 s for PES−PCL and 0.38/0.83 s for PSU−PCL which are 0.12 and 0.11 s faster, respectively, than the Pt-based porphyrin in the same matrices. Paradoxically, lower oxygen permeabilities make these polymers better suited to measuring higher (i. e., ∼20%) oxygen contents than PDMS. Individual fiber sensing was studied by fluorescence spectrometry and at a sub-micrometer scale by total internal reflection fluorescence (TIRF). Specific polymer blends relate polymer composition to the resulting sensor properties. All compositions displayed linear Stern−Volmer plots; sensitivity could be tailored by matrix or the sensing probe selection.
To fully understand biological behavior in vitro often dictates that oxygen be reported at either a local or a cellular level. Oxygen sensors based on the luminescent quenching of a specific form of electrospun fiber were developed for measurement of both gaseous and dissolved oxygen concentrations. Electrospinning was used to fabricate "core-shell" fiber configurations in which oxygen-sensitive transition-metal porphyrin complexes are embedded in an optically clear, gas permeable polycarbonate polymer 'core' while polycaprolactone provided a protective yet biocompatible 'shell'. By taking advantage of the resulting high sensitivity and fast response of electrospun core-shell fiber sensors, we were able to locate and image hypoxic regions in contact with aggregates of glioblastoma cells. Nanoscale, biomimetic sensors containing oxygen-sensitive porphyrins are particularly well suited to biological applications. These 'smart' nanofiber based sensors do not consume oxygen, their mechanical and chemical characteristics can be finely tuned allowing tailoring of biocompatibility and microstructure. Core-shell nanofiber oxygen sensing fibers could provide real-time assessments of tumor cell response to pharmacological innovations designed to target hypoxic regions driving new knowledge and technological advancement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.