A new coreactant electrochemiluminescence (ECL) system including single-layer graphene quantum dots (GQDs) and L-cysteine (L-Cys) was found to be able to produce strong cathodic ECL signal. The ECL signal of GQD/L-Cys coreactant system was revealed to be mainly dependent on some key factors, including the oxidation of L-Cys, the presence of dissolved oxygen and the reduction of GQDs. Then, a possible ECL mechanism was proposed for the coreactant ECL system. Furthermore, the ECL signal of the GQD/L-Cys system was observed to be quenched by lead(II) ions (Pb(2+)). After optimization of some important experimental conditions, including concentrations of GQDs and L-Cys, potential scan rate, response time, and pH value, an ECL sensor was developed for the detection of Pb(2+). The new methodology can offer a rapid, reliable, and selective detection of Pb(2+) with a detection limit of 70 nM and a dynamic range from 100 nM to 10 μM.
Single-layer graphene quantum dots (SGQDs) were refluxed with hydrazine (N2H4) to prepare hydrazide-modified SGQDs (HM-SGQDs). Compared with SGQDs, partial oxygen-containing groups have been removed from HM-SGQDs. At the same time, a lot of hydrazide groups have been introduced into HM-SGQDs. The introduced hydrazide groups provide HM-SGQDs with a new kind of surface state, and give HM-SGQDs unique photoluminescence (PL) properties such as blue-shifted PL emission and a relatively high PL quantum yield. More importantly, the hydrazide-modification made HM-SGQDs have abundant luminol-like units. Accordingly, HM-SGQDs exhibit unique and excellent chemiluminescence (CL) and anodic electrochemiluminescence (ECL). The hydrazide groups of HM-SGQDs can be chemically oxidized by the dissolved oxygen (O2) in alkaline solutions, producing a strong CL signal. The CL intensity is mainly dependent on the pH value and the concentration of O2, implying the potential applications of HM-SGQDs in pH and O2 sensors. The hydrazide groups of HM-SGQDs can also be electrochemically oxidized in alkaline solutions, producing a strong anodic ECL signal. The ECL intensity can be enhanced sensitively by hydrogen peroxide (H2O2). The enhanced ECL intensity is proportional to the concentration of H2O2 in a wide range of 3 μM to 500 μM. The detection limit of H2O2 was calculated to be about 0.7 μM. The results suggest the great potential applications of HM-SGQDs in the sensors of H2O2 and bio-molecules that are able to produce H2O2 in the presence of enzymes.
Hydrophilic poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) conjugated polymer dots (CP-dots) capped by Triton X-100 were synthesized. For the first time, the electrochemiluminescence (ECL) emission of CP-dots was investigated in aqueous solution. At the glassy carbon/water interface, the CP-dots have excellent and multichannel ECL properties, such as having annihilation ECL activity in the absence of coreactants, and give bright anodic and cathodic ECL emission (590 nm) in the presence of tri-n-propylamine (TPrA) and peroxydisulfate (S2O8(2-)), respectively. The versatile ECL properties of the hydrophilic CP-dots combined with their low cytotoxicity, good biocompatibility, and easy bioconjugation may suggest promising applications of this new type of ECL nanomaterial in novel biosensing and bioimaging, and new types of light-emitting devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.