It is well known that most brain disorders are complex diseases, such as Alzheimer's disease (AD) and schizophrenia (SCZ). In general, brain regions and their interactions can be modeled as complex brain network, which describe highly efficient information transmission in a brain. Therefore, complex brain network analysis plays an important role in the study of complex brain diseases. With the development of noninvasive neuroimaging and electrophysiological techniques, experimental data can be produced for constructing complex brain networks. In recent years, researchers have found that brain networks constructed by using neuroimaging data and electrophysiological data have many important topological properties, such as small-world property, modularity, and rich club. More importantly, many brain disorders have been found to be associated with the abnormal topological structures of brain networks. These findings provide not only a new perspective to explore the pathological mechanisms of brain disorders, but also guidance for early diagnosis and treatment of brain disorders. The purpose of this survey is to provide a comprehensive overview for complex brain network analysis and its applications to brain disorders.
The clinical, pathological, and immunological similarities between Kawasaki disease and the staphylococcal and streptococcal toxic shock syndromes suggest that a superantigen toxin may be involved in the pathogenesis of the disease. The VP repertoire ofperipheral blood mononuclear cells from 21 children with Kawasaki disease, 28 children with other illnesses, and 22 healthy controls were examined using monoclonal antibodies to VP2,5,8,12,and 19. The mean percentage ofV,2 expressing T cells in the patients with Kawasaki disease was increased when compared with healthy controls or children with other illnesses. The mean percentages of VP5,8,12,and 19 expressing T cells were also increased in the patients with Kawasaki disease compared with healthy controls, but were not increased when compared with children with other illnesses. The selective use of V12 supports the hypothesis that a superantigen is involved in the pathogenesis of Kawasaki disease. (Arch Dis Child 1995; 72: 308-31 1)
Motivation The development of single-cell RNA-sequencing (scRNA-seq) provides a new perspective to study biological problems at the single-cell level. One of the key issues in scRNA-seq analysis is to resolve the heterogeneity and diversity of cells, which is to cluster the cells into several groups. However, many existing clustering methods are designed to analyze bulk RNA-seq data, it is urgent to develop the new scRNA-seq clustering methods. Moreover, the high noise in scRNA-seq data also brings a lot of challenges to computational methods. Results In this study, we propose a novel scRNA-seq cell type detection method based on similarity learning, called SinNLRR. The method is motivated by the self-expression of the cells with the same group. Specifically, we impose the non-negative and low rank structure on the similarity matrix. We apply alternating direction method of multipliers to solve the optimization problem and propose an adaptive penalty selection method to avoid the sensitivity to the parameters. The learned similarity matrix could be incorporated with spectral clustering, t-distributed stochastic neighbor embedding for visualization and Laplace score for prioritizing gene markers. In contrast to other scRNA-seq clustering methods, our method achieves more robust and accurate results on different datasets. Availability and implementation Our MATLAB implementation of SinNLRR is available at, https://github.com/zrq0123/SinNLRR. Supplementary information Supplementary data are available at Bioinformatics online.
Genes that are thought to be critical for the survival of organisms or cells are called essential genes. The prediction of essential genes and their products (essential proteins) is of great value in exploring the mechanism of complex diseases, the study of the minimal required genome for living cells and the development of new drug targets. As laboratory methods are often complicated, costly and time-consuming, a great many of computational methods have been proposed to identify essential genes/proteins from the perspective of the network level with the in-depth understanding of network biology and the rapid development of biotechnologies. Through analyzing the topological characteristics of essential genes/proteins in protein–protein interaction networks (PINs), integrating biological information and considering the dynamic features of PINs, network-based methods have been proved to be effective in the identification of essential genes/proteins. In this paper, we survey the advanced methods for network-based prediction of essential genes/proteins and present the challenges and directions for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.