It is challenging to save acquisition time and reconstruct a medical magnetic resonance (MR) image with important details and features from its compressive measurements. In this paper, a novel method is proposed for longitudinal compressive sensing (LCS) MR imaging (MRI), where the similarity between reference and acquired image is combined with joint sparsifying transform. Furthermore, the joint sparsifying transform with the wavelet and the Contourlet can efficiently represent both isotropic and anisotropic features and the objective function is solved by extended smooth-based monotone version of the fast iterative shrinkage thresholding algorithm (SFISTA). The experiment results demonstrate that the existing regularization model obtains better performance with less acquisition time and recovers both edges and fine details of MR images, much better than the existing regularization model based on the similarity and the wavelet transform for LCS-MRI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.