Peaches are tasty and juicy, with a unique flavor. The flavors of peaches always vary with cultivars. To investigate the physicochemical and aroma characteristics of peaches, the sugars, organic acids, total flavonoids, phenols, antioxidant activities, and aroma compounds of seven peach cultivars in Xinjiang were determined using high-performance liquid chromatography (HPLC) and headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME–GC–MS). The results showed that sucrose (59.83 to 87.34%), malic acid (32.41 to 59.14%), and chlorogenic acid (10.43 to 45.50%) were the dominant sugar, organic acid, and phenolic compound in peaches, respectively. The antioxidant activity varied between 147.81 and 394.55 μmol TEs/100 g. The analysis of the aroma structure of peaches found that the volatile composition of peaches was relatively consistent, though the concentration of total aroma and certain separate compounds were different between cultivars. Meanwhile, the aroma fingerprint of the peaches consisted of hexyl acetate, cis-3-hexenyl acetate, γ-decalactone, n-hexanal, 2-hexenal, nonanal, decanal benzaldehyde and 6-pentylpyran-2-one, providing a clear green, sweet, floral, and fruity odor. These results provide complete information on the physicochemical properties, functional ingredients and aroma of the peaches.
Flat peaches possess characteristic flavors and are rich in nutrients. The fermentation of flat peaches to produce wine through complex biochemical reactions is an effective method to overcome their seasonal defects. Spontaneously fermented flat peach wine has plentiful and strong flavors, but the microbiota of fermentation are still unknown. In this study, the microbial succession and volatile compound dynamics of spontaneous fermentation in Xinjiang flat peach wine were investigated using high-throughput sequencing (HTS) and headspace solid phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) technology, respectively, to better understand the microbiota involved. Multivariate data analysis was used to predict the relationship between microorganisms and volatile chemicals. The results showed that Kazachstania, Pichia, Aspergillus, Fructobacillus, Leuconostoc, and Lactobacillus were the dominant genera during the spontaneous fermentation of flat peach wine. Furthermore, ethyl hexanoate, 3-hexen-1-yl acetate, ethyl caprate, ethyl caprylate, phenethyl acetate, ethanol, γ-decalactone, decanal, 1-hexanoic acid, and octanoic acid endued flat peach wine with a strong fruity and fatty aroma. The core functional microbiota (primarily consisting of 11 bacterial and 14 fungal taxa) was strongly associated with the production of 27 volatile compounds in the spontaneously fermented flat peach wine, according to multivariate data analysis. Some alcohols and esters were positively linked with the presence of Kazachstania and Pichia. Meanwhile, the presence of Fructobacillus, Leuconostoc, Lactobacillus, and Weissella was significantly correlated with 2-non-anol, ethanol, 3-methyl-1-butanol, octyl formate, isoamyl lactate, and ethyl lactate. This snapshot of microbial succession and volatile compound dynamics provides insights into the microorganisms involved in flat peach wine fermentation and could guide the production of flat peach wine with desirable characteristics.
The flat peach is a high economic value table fruit possessing excellent quality and a unique aroma. This article investigated the quality characteristics and aroma fingerprinting of flat peaches (Qingpan, QP; Ruipan 2, R2; Ruipan 4, R4; Wanpan, WP) from Xinjiang in terms of taste, antioxidant capacity, and volatile aroma compounds using high-performance liquid chromatography (HPLC) and HS-SPME-GC-MS. The results showed that the flat peaches had a good taste and high antioxidant capacity, mainly due to the high sugar–low acid property and high levels of phenolic compounds. This study found that sucrose (63.86~73.86%) was the main sugar, and malic acid (5.93~14.96%) and quinic acid (5.25~15.01%) were the main organic acids. Furthermore, chlorogenic acid (main phenolic compound), epicatechin, rutin, catechin, proanthocyanidin B1, and neochlorogenic acid were positively related to the antioxidant activity of flat peaches. All flat peaches had similar aroma characteristics and were rich in aromatic content. Aldehydes (especially benzaldehyde and 2-hexenal) and esters were the main volatile compounds. The aroma fingerprinting of flat peaches consisted of hexanal, 2-hexenal, nonanal, decanal, benzaldehyde, 2,4-decadienal, dihydro-β-ionone, 6-pentylpyran-2-one, 2-hexenyl acetate, ethyl caprylate, γ-decalactone, and theaspirane, with a “peach-like”, “fruit”, and “coconut-like” aroma. Among them, 2,4-decadienal, 2-hexenyl acetate, and theaspirane were the characteristic aroma compounds of flat peaches. The results provide a theoretical basis for the industrial application of the special aroma of flat peaches.
Globally, the red wine market experienced a rapid growth in the last decade, due to the superior colour, taste, and nutritional quality. The red grapes used for vinification have individual characteristics varying within the regional environment. In this study, the quality of seven grape cultivars, including Marselan, Yan 73, Muscat Hamburg, Kadarka, Merlot, Cabernet Sauvignon, and Crimpose, and their corresponding wines, were investigated based on high-performance liquid chromatography and headspace solid-phase microextraction coupled to gas chromatography–mass spectrometry. These techniques were performed to analyze the chemical compositions and volatile compounds of the tested samples, respectively. The results showed that tartaric acid (29.96% to 73.45%) and rutin (12.53% to 56.54%) were the dominant organic acid and phenolic compounds in grapes, respectively. Higher concentrations of organic acids and phenolic compounds, and the types of volatile compounds, were observed to be highest in the Cabernet Sauvignon grape. The antioxidant activity of wines ranged from 6.74 to 102.68 mmol TE/L, and Yan 73 wine had the highest antioxidant activity. A total of 69 volatile compounds consisting of 17 alcohols, 26 esters, 5 aldehydes, 9 acids, 7 ketones, and 5 other volatile compounds were identified in all tested wines, and 11 important aroma active substances (odor activity value > 1) were selected, consisting of β-ionone, phenethyl acetate, geranyl acetate, ethyl 9-decenoate, ethyl caprate, ethyl pelargonate, decanal, ethyl caprylate, 6-methyl-5-hepten-2-one, methyl 2-hexenoate, and ethyl hexanoate, which endow wines with a unique aroma. This work clearly describes the chemical and sensory characteristics of seven red grape cultivars in Xinjiang of China and provides diversity options for cultivars for winemaking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.