BACKGROUNDBetibeglogene autotemcel (beti-cel) gene therapy for transfusion-dependent β-thalassemia contains autologous CD34+ hematopoietic stem cells and progenitor cells transduced with the BB305 lentiviral vector encoding the β-globin (β A-T87Q ) gene.
METHODSIn this open-label, phase 3 study, we evaluated the efficacy and safety of beti-cel in adult and pediatric patients with transfusion-dependent β-thalassemia and a non-β 0 /β 0 genotype. Patients underwent myeloablation with busulfan (with doses adjusted on the basis of pharmacokinetic analysis) and received beti-cel intravenously. The primary end point was transfusion independence (i.e., a weighted average hemoglobin level of ≥9 g per deciliter without red-cell transfusions for ≥12 months).
RESULTSA total of 23 patients were enrolled and received treatment, with a median followup of 29.5 months (range, 13.0 to 48.2). Transfusion independence occurred in 20 of 22 patients who could be evaluated (91%), including 6 of 7 patients (86%) who were younger than 12 years of age. The average hemoglobin level during transfusion independence was 11.7 g per deciliter (range, 9.5 to 12.8). Twelve months after beti-cel infusion, the median level of gene therapy-derived adult hemoglobin (HbA) with a T87Q amino acid substitution (HbA T87Q ) was 8.7 g per deciliter (range, 5.2 to 10.6) in patients who had transfusion independence. The safety profile of beti-cel was consistent with that of busulfan-based myeloablation. Four patients had at least one adverse event that was considered by the investigators to be related or possibly related to beti-cel; all events were nonserious except for thrombocytopenia (in 1 patient). No cases of cancer were observed.
CONCLUSIONSTreatment with beti-cel resulted in a sustained HbA T87Q level and a total hemoglobin level that was high enough to enable transfusion independence in most patients with a non-β 0 /β 0 genotype, including those younger than 12 years of age. (Funded by Bluebird Bio; HGB-207 ClinicalTrials.gov number, NCT02906202.
Background: Long noncoding RNAs (LncRNAs) have been confirmed to play crucial roles in cancer biology. Gastric cancer (GC) is the third leading cause of cancer related death, and Helicobacter pylori (H. pylori) is the major risk factor for GC. In this study, we focused on the roles of H. pylori-related lncRNAs in the progression of GC. Method: Differentially expressed lncRNAs were identified through RNA-seq analysis of H. pylori-infected GC cells. Results: We found that the expression of the lncRNA THAP9-AS1 was up-regulated after infection of GC cells with H. pylori and was higher in GC tissues than in gastritis tissues. Colony formation, CCK8 and transwell assays were executed to show that THAP9-AS1 can promote GC cell proliferation and migration in vitro. Our study identified the pro-oncogenic lncRNA THAP9-AS1, which has a higher expression level in GC tissues than in gastritis tissues and which promoted the proliferation and migration of GC cells in vitro. Conclusion: These findings may provide a potential therapeutic target for H. pyloriassociated GC.
Eukaryotic translation initiation factor 3 (eIF3) plays an important role in the regulation of mRNA translation, cell growth and cancer development. eIF3b is the main scaffolding subunit in the eIF3 complex and has been demonstrated to contribute to the development of several cancers. First, our study found that the downregulation of eIF3b could inhibit the proliferation and metastasis of gastric cancer cells by regulating the expression of cancer-related genes. In addition, the expression of eIF3b correlated with the stage and progression of gastric cancer and was shown to be upregulated in human chronic gastritis and in gastric cancer tissues compared with the expression of eIF3b in normal gastric tissues. Moreover,
Helicobacter pylori
(
H. pylori
) infection could upregulate the expression of eIF3b in gastric cancer cells, suggesting that eIF3b might be involved in the carcinogenic process of
H. pylori
. The above findings identified the oncogenic role of eIF3b in gastric cancer development, and this may contribute to the exploration and discovery of novel therapeutic targets for gastric cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.