The data collected by the wireless sensor nodes often has some spatial or temporal redundancy, and the redundant data impose unnecessary burdens on both the nodes and networks. Data prediction is helpful to improve data quality and reduce the unnecessary data transmission. However, the current data prediction methods of wireless sensor networks seldom consider how to utilize the spatial-temporal correlation among the sensory data. This paper has proposed a new data prediction method multi-node multi-feature (MNMF) based on bidirectional long short-term memory (LSTM) network. Firstly, the data quality is improved by quartile method and wavelet threshold denoising. Then, the bidirectional LSTM network is used to extract and learn the abstract features of sensory data. Finally, the abstract features are used in the data prediction by adopting the merge layer of the neural network. The experimental results show that the proposed MNMF model has better performance compared with the other methods in many evaluation indicators.
In the practical application, sensor data collection is an essential means for the system to perceive the intrinsic features of data. The anomaly detection of data points can improve data quality and explore the potential information of data. The anomaly detection can be classified as two basic types, that is, classification and clustering. Those methods usually depend on the spatial correlation of data and have high computation complexity, so they are not suitable for the smart home and another mini-Internet of Things (IoT) environment. To overcome these problems, we propose a novel method for anomaly detection. In this paper, we first define the temporal and spatial feature of data flows; then, a time series denoising autoencoder (TSDA) is proposed to extract the discriminative high-dimensional characteristics to represent the data points. Moreover, a probability statistics-based anomaly detection model (PADM) was proposed for identifying the abnormal data. Extensive experimental results demonstrated that our method has fewer parameters and is easy to adjust and optimize. More importantly, our approach has higher precision and recall rate than the gradient boosted decision tree and XGBoot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.