Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation. We show that auxin stabilizes AtbZIP59 and enhances its interaction with LBD, and that disruption of AtbZIP59 dampens auxin-induced callus formation whereas overexpression of AtbZIP59 triggers autonomous callus formation. AtbZIP59-LBD16 directly targets a FAD-binding Berberine (FAD-BD) gene and promotes its transcription, which contributes to callus formation. These findings define the AtbZIP59-LBD complex as a critical regulator of auxin-induced cell fate change during callus formation, which provides a new insight into the molecular regulation of plant regeneration and possible developmental programs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.