In order to take advantage of different forms of heat pumps and to mitigate thermal imbalance underground caused by long-term operation of ground source heat pumps, hybrid ground source heat pump systems have received an increasing attention. In this research, based on the fact that abundant groundwater resources are commonly available in karst regions, a new strategy is introduced for selecting and determining hybrid ground source heat pump capacity. Five scenarios of hybrid ground source heat pump system coupling groundwater source heat pumps with other supplementary heat pumps are proposed in this article to provide appropriate options to eliminate heat buildup under different hydrogeologic conditions. Methodologies for sizing and selection are established. Then, a case study of techno-economic analysis was performed for a project in the karst region in South China. The results showed that these scenarios can effectively mitigate heat buildup, and under the hydrogeologic condition in the case study. Compared to the solo ground-coupled heat pump solution, the optimal solution (Solution 4 in this study) can reduce the annual costs by 16.10% and reduce the capital investment by 60%. Methodologies developed in this study are beneficial for selecting appropriate approaches to mitigate heat buildup and enhance competitiveness of ground source heat pumps.
CO2 displacement has been proposed to enhance shale gas recovery and unlock a big potential market for CO2 beneficial utilization. Theoretically, gas adsorption is inversely related to the temperature, so gas can be desorbed by elevating the temperature. This paper investigates the economic performance of enhancing shale gas recovery by injecting CO2 at high temperatures through displacement as well as desorption by rising temperatures. Influences of operation temperature and injection pressure were studied for three potential shale plays in China. Study results show that both factors exerted obvious impacts, and CO2 procurement was the largest cost component. It is found that the net revenue was not always proportional to the operation temperature, but more controlled by the injection–production ratio. This is because of the different temperature impacts to the various patterns of adsorbed CH4 and CO2 contents. Consequently, in some cases, more CO2 is needed to displace CH4 when operation temperature is raised, resulting a higher cost. The modeling results demonstrate that based on the adsorption characters of reservoirs, the productivity and profitability of CO2 enhanced gas recovery can be further improved by choosing appropriate operation temperatures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.