Acromioclavicular dislocation (ACD) is a common injury. According to the Rockwood classification, ACD is classified into six types (type I–VI); however, for type III injuries, it remains controversial whether or not operative treatment should be applied. Numerous studies have advocated early surgical treatment to ensure early rehabilitation activities. Thus, the present study aimed to investigate a modified closed-loop double-endobutton technique (MCDT), that may be used to repair Rockwood type III ACD. In the current study, 61 patients with Rockwood type III ACD were enrolled during a period of 5 years at the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University. Patients were divided into three groups according to the surgical method used, the MCDT group (n=20), the common closed-loop double-endobutton technique (CCDT) group (n=21), and the clavicular hook plate fixation (CHPF) group (n=20). Preoperative and intraoperative information were recorded. Furthermore, the functional scores of injured shoulder were evaluated prior to surgery and following surgery with a 1-year follow-up. Among the three groups, postoperative functional scores were significantly more improved compared with those prior to surgery (P<0.05), and no significant difference was observed regarding the coracoclavicular interval with the 1-year follow-up (P>0.05). Postoperative functional scores in the MCDT and CCDT groups were significantly more improved compared those in the CHPF group (P<0.05). In addition, the duration of surgery in the MCDT group was significantly shorter compared with that in the CCDT group (P<0.05). Furthermore, compared with the CHPF group, the incision length was significantly shorter with reduced hemorrhage in the MCDT group (P<0.05). In conclusion, the results of the current study suggest that MCDT is more simple, convenient and efficient compared with CCDT, and is worth popularizing.
BackgroundThe anterior cruciate ligament (ACL) is one of the most important structures maintaining stability of knee joints, and the proprioception of the ACL plays a key role in it. If the ACL is injured in the unilateral knee joint, it changes nerve electrophysiology, morphology, and quantity of the proprioceptors in the bilateral ACL. The aim of this study was to explore the proprioceptive changes in the bilateral knee joints following unilateral ACL injury, and to provide a theoretical foundation and ideas for clinical treatment.Material/MethodsNine normal cynomolgus monkeys were chosen and used to developed a model of unilateral ACL injury, and 3 monkeys without modeling were used as blank control. At the 4th, 8th, and 12th weeks, the changes in ACL nerves were inspected using electrophysiology [somatosensory evoked potentials (SEPs) and motor nerve conduction velocity (MCV)], and the changes of morphology and quantity of the proprioceptors in ACL were observed and measured under gold chloride staining.ResultsOn the injured and contralateral knee joints, the incubations were extended and the amplitudes were decreased over time. In addition, with the extension of time, the total number of proprioceptors in the ACL decreased, and the variable number of proprioceptors in the ACL increased.ConclusionsACL injury leads to attenuation of proprioception on the injured side, and also leads to the attenuation of proprioception on the contralateral side, and there is a tendency could get worse over time.
Cardio-cerebrovascular disease is one of the three major causes of mortality in humans and constitutes a major socioeconomic burden. Carotid atherosclerosis (CAS) is a very common lesion of the arterial walls, which leads to narrowing of the arteries, in some cases occluding them entirely, increasing the risk of cardiovascular events. The aim of the present study was to evaluate a cynomolgus monkey model of carotid atherosclerosis (CAS) induced by puncturing and scratching combined with a high-fat diet. A total of 12 cynomolgus monkeys were randomly divided into four groups: A, puncturing and scratching carotid artery intimas + high-fat diet (n=3); B, puncturing and scratching carotid artery intimas + regular diet (n=3); C, high-fat diet only (n=3); and D, regular diet only (n=3). Blood was harvested at weeks 4, 6 and 8 and plasma lipid levels were assessed. At week 8, monkeys were sacrificed and carotid arteries were harvested for hematoxylin and eosin (H&E) staining to observe pathological changes. The results revealed that a high-fat diet led to increased plasma lipid levels and accelerated plaque formation. Carotid color Doppler ultrasonography was performed and, along with H&E staining, revealed plaque formation in group A. In summary, the results of the present study suggest that a cynomolgus monkey model of CAS model may be successfully constructed by puncturing and scratching of the carotid artery intimas in combination with a high-fat diet.
Background:The identification and precise clavicle-coracoid drilling during coracoclavicular (CC) ligament reconstruction for acromioclavicular (AC) joint dislocation require a high level of experience and surgical skills. Furthermore, the improvement of flexible fixation, such as Endobutton techniques for CC ligament reconstructions is ongoing. We have developed a 3D printing technique navigation template for clavicle-coracoid drilling and a novel implant for the reconstruction. This study aimed to determine the efficiency of the navigation template for clavicle-coracoid drilling and to evaluate the biomechanical performance of the novel CC ligament reconstruction technique.Methods: A total of 24 fresh-frozen human cadaveric shoulders were randomly assigned to 1 of 3 reconstruction groups or a control group: TightRope, Triple Endobutton, and the Adjustable Closed-Loop Double Endobutton technique. Computed tomography scans, navigation template designs, and 3D printing were performed for the shoulders. Then, AC joint dislocation was simulated in the reconstruction groups, and 3 CC ligament reconstruction techniques were operated via the 3D printing template separately. Furthermore, biomechanical protocols including the translation test (load from 5N to 70N) and the loadto-failure test were performed to characterize the behaviors and strengths. One-way ANOVA test analyzed differences in displacement under the translation load and the load at failure.Results: CC ligament reconstructions were performed successfully along with the 3D printing navigation template in the 3 reconstruction groups. During the translation test, no significant difference was found in displacements among the 4 groups. Meanwhile, the mean load of all reconstruction groups at failure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.