In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC 50 (mg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 mg/mL) compared to the reference drug acarbose (21.59 ± 1.5 mg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a noncompetitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.
Sibi et al. reported an enantioselective rhodium catalysed enolate protonation method for the synthesis of β²-amino acid (Scheme 4). Rh(acac)(ethylene) 2 and difluorophos used to form a complex which catalyzed the conjugate addition of aryl boronic acids to β-acrylates. The intermediate oxa-β-allyl-Rh resulted in good yields using one equivalent of phthalimideas proton source [15].
Abstract::
Quinoline derivatives are considered as broad spectrum pharmacological compounds that exhibit wide range of biological activities. Integration of quinoline moiety can improve its physical and chemical properties and also pharmacological behavior. Due to its wide range of pharmaceutical applications it is very popular compound to design new drugs for treatment of multiple diseases like cancer, dengue fever, malaria, tuberculosis, fungal infections, AIDS, Alzheimer’s disease and diabetes . In this review our major focus is to pay attention on biological activities of quinoline compounds in treatment of these diseases such as, anti-viral, anti-cancer, anti-malarial, anti-bacterial, anti-fungal, anti-tubercular and anti-diabetic.
Synthetic heterocyclic compounds have remarkable potential activity against diseases; thioamides, benzimidazoles, quinolones and derivatives with carboxylic acid and esters moieties have shown excellent activity against Mycobacterium tuberculosis. We reviewed antituberculosis activities of above compounds with reference to half maximal inhibitory concentration, minimum inhibitory concentration and structural-activity relationship which clearly indicate that electron-withdrawing groups are the main inducers of antimycobacterium activity. Comparison between clinically used drugs and new synthetic derivatives showed recent advances made in the last decade.
Transition metal-based compounds constitute a distinct class of chemotherapeutics extensively used in the clinic as antitumor and antiviral agents. However, drug resistance and side effects of established antitumor metallodrugs such as cisplatin [cis-diamminedichloroplatinum(II)] and its analogues, carboplatin and oxaliplatin, have limited their clinical utility. These limitations have prompted a search for more effective and less toxic metal-based antitumor agents. The unique properties of metal ions, such as redox transfer/electron shuttling, and versatile coordination geometries arising from various oxidation states, result in metal ions and complexes that have potential medicinal applications that could be complementary to organic compounds and which are widely sought in drug discovery efforts. This review summarizes the results that show that transition metal complexes exhibit antitumor effects that differ from cisplatin or its analogues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.