Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Arslan Uzun R., İncetaş M. O. and Dikici S. "Effects of character recognition with shell histogram method using plate characters", Politeknik Dergisi, 22(4): 1093-1099, (2019).Erişim linki (To link to this article): http://dergipark.org.tr/politeknik/archive ABSTRACT Character recognition is a study that has been used in various fields for many years. In character recognition, the aim is to identify the various texts, letters and symbols in the images as accurately and quickly as possible. In addition to the Optical Character Recognition (OCT) method, which is used as a very common method, there are many feature extraction methods in which character image features are compared. In this study, which is presented as another feature extraction method, the letters on the license plates are recognized. The characters were examined using the circular shape histogram technique and histograms were obtained from the sectors within the circular regions. Feature vectors for letter characters were created using character pixel densities in sectors. Feature vectors are analyzed linearly and an alternative quick character recognition method is presented. With the proposed method, the element numbers of the feature vectors are kept constant. In this way, both the processing speed is increased and the processing speed variations are minimized. The results show that the proposed method requires lesser parameters than the OCT method, but also has a significant success rate according to known feature extraction methods.
Flaş Elektroretinogram sinyalleri gözün retina tabakasının flaş bir ışık ile uyarılması sonucu ortaya çıkan elektriksel potansiyellerdir. Bu sinyale ait iki temel bileşeni olan 'a' ve 'b' dalgaları retina tabakasının değerlendirilmesinde önem arz etmektedir. Bunun için farklı sinyal işleme tekniklerinden yararlanılmaktadır. Yapılan bu çalışmada sağlıklı bireylerden kaydedilen flaş Elektroretinogram sinyallerinin rod, maksimum kombine ve kon yanıtları kullanılarak Kısa Zamanlı Fourier Dönüşümü ve Sürekli Dalgacık Dönüşümü yöntemleriyle sinyallerin 'a' ve 'b' dalgaları analizi edilmiştir. Bu doğrultuda dalgaların lokasyonlarının tespit edilmesinde hangi yöntemin daha başarılı olduğu irdelenmiştir. Gerçekleştirilen analizler sonucunda her üç yanıtta da dalgaların analizi için Sürekli Dalgacık Dönüşümünün daha başarılı bir yöntem olduğu tespit edilmiştir. Bunun yanı sıra Sürekli Dalgacık Dönüşümünde rod ve kon yanıtları için Coiflet, Gauss, Meksika şapka ve Morlet dalgacıklarının, maksimum kombine yanıtı için ise Morlet dalgacığının kullanılması halinde dalgaların lokasyonlarının daha doğru bir şekilde tespit edebileceği saptanmıştır.
Edge detection is one of the most basic stages of image processing and have been used in many areas. Its purpose is to determine the pixels formed the objects. Many researchers have aimed to determine objects' edges correctly, like as they are determined by the human eye. In this study, a new edge detection technique based on spiking neural network is proposed. The proposed model has a different receptor structure than the ones found in literature and also does not use gray level values of the pixels in the receptive field directly. Instead, it takes the gray level differences between the pixel in the center of the receptive field and others as input. The model is tested by using BSDS train dataset. Besides, the obtained results are compared with the results calculated by Canny edge detection method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.