Colon cancer (CC), one of the major causes of tumor-associated death, is often presented with a heterogenic pool of cells with unique differentiation patterns. This study explored the functions that LINC00460 displayed in CC by regulating and Annexin A2 (ANXA2). LINC00460 expression was either silenced or overexpressed in HCT-116 and LOVO cells to explore the functional roles of LINC00460 in CC. The relationship between miR-433-3p and LINC00460/ANXA2 was analyzed using dual-luciferase reporter assay, RNA-pull down, and RNA immunoprecipitation (RIP) assays. Cell proliferation, metastasis, invasion, and apoptosis were examined in vitro, and tumorigenicity was evaluated in vivo following LINC00460 silencing. Additionally, the regulatory mechanisms were investigated using LINC00460 and ANXA2 gain-or loss-of-function experiments. We found that LINC00460 was expressed highly in CC. Downregulation of LINC00460 inhibited cell invasion and proliferation in vitro and restrained tumor growth in vivo. Moreover, LINC00460 was able to specifically bind to miR-433-3p to increase the expression of ANXA2. Furthermore, LINC00460 downregulated the E-cadherin expression and upregulated the vimentin and N-cadherin expression by upregulating ANXA2, therefore inducing epithelial-mesenchymal transition. These findings suggested that LINC00460 might function as an oncogenic long non-coding RNA (lncRNA) in CC development and could be explored as a potential biomarker and therapeutic target for CC.
BackgroundMicroRNAs (miRNAs) are a large group of post-transcriptional gene regulators that potentially play a critical role in tumorigenesis. Increasing evidences indicate that miR-744 deregulated in numerous human cancers including hepatocellular carcinoma (HCC). However, its role in HCC carcinogenesis remains poorly defined. In this study, we investigated the roles of miR-744 in tumor growth of HCC.MethodsQuantitative reverse-transcription polymerase chain reaction (qRT-PCR) was conducted to detect the expression of miR-744 and Immunohistochemistry was performed to detect expression of c-Myc in HCC specimens and adjacent normal tissues. The biological functions of miR-744 were determined by cell proliferation and cell cycle assay. Furthermore, cell lines transfected with miR-744 mimics were analyzed in vitro. Luciferase reporter assays was performed to confirm whether miR-744 regulated the expression of c-Myc.ResultsOur results showed that the expression of miR-744 was frequently down-regulated in both HCC tissues and cells. Furthermore, restoration of miR-744 in HCC cells was statistically correlated with decrease of cell growth and restored G1 accumulation. Luciferase assay and Western blot analysis revealed that c-Myc is a direct target of miR-744. Down-regulation of miR-744 and up-regulation of c-Myc were detected in HCC specimens compared with adjacent normal tissues. Moreover, restoration of miR-744 rescues c-Myc induced HCC proliferation.ConclusionsOur data suggest that miR-744 exerts its tumor suppressor function by targeting c-Myc, leading to the inhibition of HCC cell growth. miR-744 may serve as a potentially useful target for the miRNA-based therapies of HCC in the future.
Previous studies manifested that microRNA-145-5p is pivotal in the development of various cancers. Nevertheless, the potential function of microRNA-145-5p in colorectal cancer remains unclear. This study attempted to investigate the potential role and possible mechanism of microRNA-145-5p in colon cancer. MicroRNA-145-5p and phosphoserine aminotransferase 1 (PSAT1) levels in colon cancer cells were assayed via quantitative reverse transcription polymerase chain reaction (qRT-PCR). Cell proliferation and cell cycle status were assessed using Cell Counting Kit-8, colony formation, and flow cytometry. The target binding relationship of microRNA-145-5p and PSAT1 was identified using bioinformatics analysis and dual-luciferase reporter gene assay. The result of qRT-PCR disclosed that microRNA-145-5p was markedly down-regulated and PSAT1 level was up-regulated in colon cancer cell lines. Besides, enforced microRNA-145-5p level repressed proliferation of colon cancer cells, and cells were arrested in G0-G1 phase. Bioinformatics analysis and dual-luciferase reporter genes confirmed that PSAT1 was a downstream target of microRNA-145-5p. Enforced PSAT1 level remarkably modulated cell cycle and fostered cell proliferation. Furthermore, rescue experiments displayed that microRNA-145-5p restrained cell cycle progression and cell proliferation and forced PSAT1 level could partially reverse this process. Taken together, our findings demonstrated that microRNA-145-5p repressed colon cancer cell cycle progression and cell proliferation via targeting PSAT1. Our findings identified microRNA-145-5p as an essential tumor repressor gene in colon cancer and may provide a novel biomarker for colon cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.